
Embedded product planning
and requirements guide

2 The Qt Company | Embedded product planning and requirements guide

Introduction
There has never been a better time to build embedded products. A profusion of
open-source software stacks, community resources, silicon components, and
electronics assemblies have made it possible to develop polished, feature-rich products
in a minimal amount of time.

Yet paradoxically, the abundance of technology choices without clear and definitive
selection criteria can derail development into non-productive research projects and
analysis paralysis. Worse yet, bets on technology losers can force engineering teams
into market-delaying re-work exercises or early product obsolescence.

To simplify the information overload at the outset of your Internet of Things (IoT) or
embedded project, we’ve examined the most important criteria to consider, put together
a list of the most used technologies, and rated them in easy-to-compare categories.

We sincerely hope that this guide can reduce the effort and risk in building your
next product.

3 The Qt Company | Embedded product planning and requirements guide

Contents

4 The Qt Company | Embedded product planning and requirements guide

How do you approach building a new embedded or IoT device? The
legacy method for doing this was relatively straightforward: outline your
requirements, design your hardware board, and develop software to
run on it.

However, this method no longer works well today. Competition is fierce,
market windows are short, and customer expectations are high. These
pressures have two direct effects. One is that, rather than hardware,
software now dictates product design. This is because software development
requires significant time and resources, and can make or break a device’s
overall customer experience. The other is that companies must be nimbler
than ever. They need to plan for constant change.

To develop modern embedded products, you need to take four very
important steps.

OUR METHODOLOGY

OUR
METHODOLOGY

5 The Qt Company | Embedded product planning and requirements guide

OUR
METHODOLOGY

4 important steps for developing modern embedded products

Set the scope.
Write your market requirements document to describe your
product’s feature set and usability, just as you would typically.
Just make sure you have a serious discussion between senior
management, marketing, support, and engineering about how
far and wide that product’s software might extend. Make sure
you have talked to your customers and understood your
competition. From all of this, you’ll have developed some
“future-proofing” factors that you should consider adding
to the requirements.

Select the software.
A product’s software stack determines what it can do and
what it can run on. Pick software that supports the widest
variety of hardware with a credible support and maintenance
plan. Choose software with the fewest external dependencies
on libraries or components. Opt for software with industry
standards, stable APIs and reusable software components.

1 3

Determine the process.
Understand the interaction between your software developers,
UX designers, and hardware engineers. Ensure that the tools and
workflows you develop support efficient and reliable product
development as well as your team’s ability to move fast and
adapt quickly.

2
Select the hardware.
Pick the hardware platform that meets your requirements and
software. Cost, reliability, and dependable delivery are traditional
criteria; finding hardware platforms that can scale both up and
down is a bonus.

4

https://www.pragmaticinstitute.com/resources/articles/product/writing-the-market-requirements-document

6 The Qt Company | Embedded product planning and requirements guide

SETTING THE SCOPE
There are many questions you need to answer about your embedded
project before writing the first line of code or selecting the first component.

They all come down to this: what is the holistic scope of the project?
And can your future product roadmap be built on the choices you make
today? You can waste tons of time reengineering and retrofitting if you
don’t understand everything your project touches.

This section covers the big choices you need to get nailed down in the
pre-planning phase, including some options you may have not considered.

SETTING
THE SCOPE

7 The Qt Company | Embedded product planning and requirements guide

SETTING
THE SCOPE

Product lifecycle
Building a successful product is one thing. But it’s quite another to keep it
relevant in a dynamic marketplace long after initial deployment. You don’t
always plan maintenance releases to add new features or bug fixes – they
may get forced on you by retired hardware, cybersecurity updates, or changing
user expectations.

Maintaining your product requires stable software components you can rely on.
You’ll want to look for software that will be supported for a very long time, so
you’re not forced to update until you need to.

Sometimes you’re developing embedded products at the bleeding-edge. In this
case, you’ll want to look for strong cross-platform support to provide peace of
mind against hardware obsolescence and shifting user preferences.

8 The Qt Company | Embedded product planning and requirements guide

Reusability and cross-platform
Good code is hard to write, so reuse it as often as possible on as many platforms as possible. Determine
the processor architectures, the platforms, and the operating systems that your software stack needs
to run on. Focus your software’s external dependencies into a few well-controlled modules, and
you’ll find reusing it much easier.

Every software component may not run on every single combination, but you want to avoid inventing
custom workarounds when possible. And while it’s great to support open source, don’t get forced
into contributing to an open-source module your project uses just to ensure it supports your required
hardware/software combination. Pick software that already has support for what you need.

WHEN TO ABSTRACT
If your software doesn’t use cross-platform compatible software from the start, you’ll probably need to create
abstraction layers to insulate your software from changing dependencies. Admittedly, this requires additional
up-front work. However, a decent abstraction implemented early can save a huge amount of time compared
to retrofitting the entire code base after-the-fact.

Everything doesn’t need abstraction – focus on the areas that are most likely to change when swapping
out hardware, OS, or third-party software components. Don’t try to get it perfect, since no matter how well
thought-out the design, your abstraction may not accommodate all future changes. It’s okay if it needs
slight tweaks when you change directions.

SETTING
THE SCOPE

9 The Qt Company | Embedded product planning and requirements guide

Internationalization
Are you going to restrict your product to a single language
or region? Probably not, unless you can walk away from a
global audience and the ability to grow your market share.
Even if your initial release is in English only, make sure
that you develop your code using languages, tools, and
UI frameworks that make an internationalization (i18n)
transition easy. You’ll want string constants that can be
transparently resourced for developer and translator ease,
and UIs that are separated from the business logic.

Gross domestic product (GDP) by language

Japanese 5.6%
Spanish 5.2%

German 4.9%

French 4.2%

Portuguese 3.4%

Italian 2.9%

Russian 2.1%

Hindi 2.1%

Arabic 2%

Korean 1.4%
Indonesian 1.1%

Dutch 1%

English 28.2%

Chinese 22.8%

Latest available estimates: Unicode technical note #13.

Other 13.1%

SETTING
THE SCOPE

http://www.unicode.org/notes/tn13/

10 The Qt Company | Embedded product planning and requirements guide

Connectivity, updatability, and security
It’s a given that most embedded devices today need connectivity, especially to
support over-the-air (OTA) updates for security patches, bug fixes, and feature
updates. Decide whether updates should be driven by the device, your backend,
your user, or a combination of the three. While many developers attempt to
create their own OTA update scheme, there’s enough complexity and
consequence here to strongly consider using a commercial off-the-shelf solution
instead. If you go the open-source route, make sure you pick a project that
doesn’t only support your hardware but also accounts for active maintenance
in its roadmap. Also, be sure to plan for the extra storage your OTA solution
requires – some of which will more than double your flash footprint.

Connections require software security, and this security must be built-in,
not bolted-on. Software should be protected from the worst when it
comes to uploaded files, user input, and network connections. Ensure your
software engineers are trained in cybersecurity best practices and work with
cybersecurity experts when needed. Hardware needs security scrutiny too:
don’t populate ports or components that were specifically added for
development, debugging, or testing on your production systems, and make
sure that you’re taking advantage of hardware locks and security features
like Secure Core or TrustZone.

Authentication
and encryption
measures to
prevent OTA
misuse

Patch
verification,
image validation,
and retry
mechanisms for
reliable delivery

Integrated
build tools for
automatic patch
generation

Diagnostic
reporting to track
in-field software
versions and
update attempts

Difference
computing and
compression to
minimize
package size

Delivery
throttling
and variant
segmenting to
reduce server
load

Rollback
capability to
handle bad
deployment
emergencies

LOOK FOR THESE OTA FEATURES

SETTING
THE SCOPE

11 The Qt Company | Embedded product planning and requirements guide

Mobile companion apps
Today’s embedded devices often have mobile app connections because the
user’s phone is always available, provides remote access, and gives companies
new ways to connect with customers. However, coding two independent apps
on distinct platforms doubles the workload. That means no matter how
attractive your developers might find Swift or Kotlin for mobile development,
it’s easiest to pick a single language and toolchain that works on Apple,
Android, and your embedded platform. That way, you can create your mobile
app once and share your development resources, graphical assets, usability
designs, and code base across all devices.

SETTING
THE SCOPE

12 The Qt Company | Embedded product planning and requirements guide

Cloud and beyond
There are, of course, many other capabilities you can consider for your
IoT or embedded product. Here are several.

Cloud-powered.
Divide your device’s feature implementation between the edge and the cloud,
letting you add instant features to every product in the field and offload
portions of your product’s logic and resources to a scalable alternative.

Integrated artificial intelligence (AI).
Collect data about hardware faults, log information, and usage patterns, and
use machine learning to build products with better UIs and smarter behavior.

Digital twins.
Gather data on your device’s states and status, allowing you to virtualize
your physical device on a desktop or mobile.

Blockchain.
Add protection with a verifiable, unchangeable, and trusted record of
transactions distributed across systems.

Although blockchain is typically used for currency,
it can also be useful for embedded devices whenever trusted
data storage is critical:

• Recording sensor data for compliance and regulatory review

• Validating messages for third-party authentication

• Logging tamper-proof data for process oversight

• Storing manufacturing information for certification

• Sharing calibration records for measurement certainty

Did you know?

SETTING
THE SCOPE

https://resources.qt.io/whitepaper/qt-the-embedded-developers-guide-to-zero-installation
https://resources.qt.io/whitepaper/qt-the-embedded-developers-guide-to-zero-installation
https://www.edn.com/blockchain-uses-for-engineers-may-happen-someday/

13 The Qt Company | Embedded product planning and requirements guide

The goal at a project’s outset should be to develop workflows that
shorten development time without sacrificing (or even improving) quality.
This includes streamlining the workflow between four main functions:
UX design, software development, hardware engineering, and quality
assurance (QA). Also consider better tools, cooperative design, and
agile methodologies.

DEVELOPMENT PROCESS

DEVELOPMENT
PROCESS

14 The Qt Company | Embedded product planning and requirements guide

DEVELOPMENT
PROCESS

Software development
You want your software development toolchain to be easy to
learn yet efficient to use, so new developers pick it up quickly
while experienced ones churn out quality code. Your tools
should generate optimal results – small binaries, fast
executables, and a resource-light run-time. While many
open-source options are available and excellent, don’t be
afraid to spend money on tools if they help streamline your
development – it’s worth the investment.

Rapid but stable tools
Ensure that you pick tools in active development so that your
team can get access to new programming paradigms, more
efficient methodologies, support for new hardware, and the
ever-important bug fixes. And while you want active third-
party tools, be certain the software tools you rely on aren’t
changing so fast or unpredictably that it introduces extra
friction into your development. Sourcing most of your tools
from the same place can minimize distribution and
compatibility issues among your team.

15 The Qt Company | Embedded product planning and requirements guide

Building
The build process is the unsung hero of software
development: it enables consistent, reliable, and tracked
software builds. While almost every build system will have
custom components, try to conform your build tools and
scripts as much as possible to industry standards and
popularly used tools. People have already solved the
problems your team has – don’t be afraid to leverage them.

Testing
Lacking an adequate test framework can kill a project.
The more you can rely on your selected tool suite to help
provide your test scaffolding and continuous integration (CI)
needs, the less you will need to manually create. Another
important benefit of using existing commercial or open-source
tools is that these tools will be feature-rich and properly
maintained compared to your home-grown solution. Don’t
scrimp on testing since it’s much better to find problems
before integration – and before customers do.

DEVELOPMENT
PROCESS

16 The Qt Company | Embedded product planning and requirements guide

UX design and UX workflow
User experience (UX) is the most definitive way to differentiate your product
today; people become loyal to a brand when they have a positive experience.
The best user interfaces combine the talents of both designers and developers;
they also have a framework that supports both skillsets to work
simultaneously on a project.

An iterative workflow between design and development helps build better
products faster by avoiding wasted time in several areas:

• reimplemented design screens
• design errors from misunderstood specifications or incomplete hand-offs
• stifled usability from rigid processes of traditional UX workflows

Designers need to be able to create, visualize, and prototype the all-important
user experience using artwork developed with their preferred tools. You want
these tools to support a clean separation of user interface (UI) and business
logic so that designers can test and integrate improved UI designs throughout
the software development process.

Creating design prototypes that can run on real target hardware from an
early stage will eliminate some unnecessary inter-departmental feedback
loops. Running UI designs on actual embedded hardware lets designers
confirm real-life visual qualities such as screen size, aspect ratio, and color
depth. More importantly though, this provides immediate feedback on
performance. Since UI design is driven by mobile phones that often have higher
performance than their embedded equivalents, designers can understand
when their UIs are overkill or underperforming so they can tweak them
before the design is done.

Pulling off a smooth UX workflow within your
company requires the right corporate culture.
Read this whitepaper for an in-depth discussion
about how your UX is critical to your project’s
success and how to develop a UX-supportive
culture within your organization.

DEVELOPMENT
PROCESS

https://resources.qt.io/whitepaper/whitepaperuserexperience

17 The Qt Company | Embedded product planning and requirements guide

Integrated development
environment
An integrated development environment (IDE) is where programmers spend
the majority of their time coding, testing, and debugging. But a good IDE
needs to do much more.

Integration
Look for fully-integrated tools that can support the entire software
development process – designing, writing, building, debugging, profiling,
testing, localizing, and deploying. IDEs that work with real targets, as well
as some form of target emulation, let development continue even when
there isn’t enough prototype hardware to go around.

GUI design
Designers create a product’s graphical user interface (GUI) with WYSIWYG
(what you see is what you get) tools to build screens with controls and
visual elements. GUI design should be directly supported by your IDE, both
on a workstation and a target. This will be a big time-saver, especially
during prototyping and usability fine-tuning. It’s also a necessity to find
an environment that allows designers to build UIs without special training.

DEVELOPMENT
PROCESS

18 The Qt Company | Embedded product planning and requirements guide

Asset import
Look for IDEs that can integrate with designer tools
(such as Adobe Photoshop, Autodesk 3ds Max,
Blender, Figma, Maya, Modo, or Sketch) so artists
can get those assets directly into your project. If the
tools can also import UI actions, animations, and
interactions, it lets these UI elements be specified
by the design team rather than reimplemented
by developers.

Project management
Version control and build systems may not be
glamourous, but they are absolute necessities for
reliable software and a productive development
environment. An IDE that has out-of-the-box
integration with your preferred revision control
system and build tools makes engineers’ lives
easier and more efficient.

Expansion
A good plug-in ecosystem helps the IDE support
your company’s workflow and tools, and also lets
developers adapt it to their individual preferences
and development timesavers. Plug-ins for static
code analysis and performance metrics give
developers critical insights into their software
to both fix and optimize it.

DEVELOPMENT
PROCESS

19 The Qt Company | Embedded product planning and requirements guide

Maintenance
How are you going to manage product maintenance releases? We’re not talking about your own bugs and feature updates but rather
changes in the external software you use. All dependencies you bring into your product – operating system, drivers, libraries, frameworks,
and tools – are changing at their own pace in ways that you can’t control. These can introduce problems like broken application
programming interfaces (APIs), conflicting application binary interfaces (ABIs), incompatible toolchains, and deprecated software.

Consider incorporating software building blocks into your application that provide long-term support, bug fixes, and cybersecurity patches
even on older releases. Because of this, you’ll want your third-party inclusions to have a strong and thriving developer community.

Fewer bugs1

Easier and quicker upgrades4

Better third-party support7

Better cybersecurity2

Additional features5

Easier cross-system compatibility6

Improved performance3

7 REASONS TO KEEP YOUR DEPENDENT SOFTWARE UP TO DATE

DEVELOPMENT
PROCESS

20 The Qt Company | Embedded product planning and requirements guide

Community
and documentation
Finally, look for big ecosystems. How widely supported your software tools
are can make a huge difference in solving tough problems, finding already
available and compatible libraries, or hiring new talent.

Look for solutions with deep support in multiple areas: dedicated online
conversations, stack overflow keywords, git sample code repos, and job
search categories. The more plug-ins, applications, command-line tools, or
third-party developers you have for your favorite toolchain, the more chance
there is that someone has created the solution you need. It lets you quickly
find help, whether that’s detailed docs, API examples, online tips – even
hiring contractors.

ESSENTIALS FOR YOUR
SOFTWARE STACK COMPONENTS

Availability of source code

No vendor lock-in

Low total cost of ownership

Thriving developer community

Well-supported tool ecosystem

Quick time-to-market

DEVELOPMENT
PROCESS

21 The Qt Company | Embedded product planning and requirements guide

The heart of your product is its software. The software building blocks
you use define the scope and limits of your product’s capabilities.
We look at some of the most popular choices in the software stack
that define your development environment.

SOFTWARE STACK

SOFTWARE
STACK

22 The Qt Company | Embedded product planning and requirements guide

SOFTWARE
STACK

OS
The component of your software stack that is perhaps the most influential is the operating system. Your choice of OS dictates the software you can
incorporate into your system. It also can make some tasks easy while making others fiendishly difficult. (Although nowhere near as difficult as going bare
metal and doing it all yourself!) Here’s our take on eight of the most popular operating systems in the embedded market.

 Embedded
Linux

Android QNX Neutrino
RTOS

GreenHills
INTEGRITY

Wind River
VxWorks

Amazon
FreeRTOS

webOS Windows
for IoT

Ease of development ★★★★ ★★★★★ ★★★ ★★ ★★★ ★★ ★★★★ ★★★★

Efficiency ★★★ ★★ ★★★★ ★★★★ ★★★★ ★★★★★ ★★ ★★★

Deterministic behavior
(real-time) ★★★ ★ ★★★★★ ★★★★★ ★★★★★ ★★★★ ★★ ★★

API POSIX POSIX POSIX POSIX POSIX FreeRTOS POSIX UWP
Connectivity ★★★★★ ★★★ ★★★ ★★★★ ★★★ ★★ ★★★★★ ★★★★★

Graphics ★★★★ ★★★★★ ★★★★ ★★ ★★ ★ ★★★★ ★★★★★

Hardware support ★★★★★ ★ ★★★ ★★ ★★★★ ★ ★★ ★★★★

Open source Yes Yes No No No Yes Yes No
Community ★★★★★ ★★★★ ★★★ ★★ ★★ ★★ ★★ ★★★

Licensing pricing $ $ $$$$ $$$$ $$$ $ $ $$$$$
Customization and
hardening cost $$$ $$$$ $$ $$ $$ $$$ $$$ $

★ is the lowest ranking while ★★★★★ is the highest. Please refer to technology acronyms in Appendix A

The charts in this eBook represent a quick and easy assessment that highlights software and hardware strengths in a way that is less sensitive to marketplace dynamics and captures the
essence of each component. (With the rapid pace of development, there’s no way a comprehensive guide can be kept fully up to date.) Typical use cases for these charts include large (industrial,
medical, autonomous), medium (infotainment, white goods, kiosk), and small applications (handheld devices, IoT, wearables). If multiple options for a component are available, we list stats for
the most capable variant. We’ve selected some of the most popular hardware choices but check with your supplier for their full range of products.

23 The Qt Company | Embedded product planning and requirements guide

Containers and hypervisors
Today’s powerful processors have brought desktop and cloud solutions to
embedded, including two powerful methods to subdivide your product’s
software architecture: containers and hypervisors.

Containers can accelerate embedded project development: making tool setup
instantaneous and consistent, standardizing testing frameworks, and
maintaining multiple independent tool/library configurations. Containers can
also be an interesting building block when used on the target by making for
straightforward device provisioning, easy hardware vendor updates, and
excellent testing from the same codebase.

Hypervisors are exclusively about helping the target by providing protection,
sandboxing, and independent operation. They allow you to run multiple
operating systems (OSes) simultaneously on one chip. As an example, you
might run your system-critical or safety-critical features on an OS like the QNX
Neutrino RTOS or GreenHills INTEGRITY RTOS, the product’s main UI on a
second OS like Embedded Linux, and downloadable third-party apps on a third
OS like Android or WebOS. Hypervisors also make a critical difference when
building a device with functional safety requirements.

SOFTWARE
STACK

https://blog.feabhas.com/2017/09/introduction-docker-embedded-developers-part-1-getting-started/
https://resources.qt.io/qt-on-demand-webinars/build-and-run-your-embedded-applications-faster-with-qt-creator-and-docker-on-demand-webinar
https://resources.qt.io/built-with-qt-showcases/automotive-digital-cockpit-with-multi-os-support
https://resources.qt.io/built-with-qt-showcases/automotive-digital-cockpit-with-multi-os-support

24 The Qt Company | Embedded product planning and requirements guide

Language
Building your application on top of an OS will require a programming language. Every programming language has strengths and weaknesses that find
their way into the development process and impact the development of your embedded application. These constraints include the types of GUIs that each
language can support. Here we explore some of the embedded industry’s leading candidates.

 C C++ Java Python /
MicroPython

JavaScript/
HTML5/CSS

Rust

Strengths Embedded,
bare-metal, IoT

Embedded, bare-
metal, standalone
apps, IoT

Web, cloud Cloud, data science Web Embedded,
bare-metal

Ease of development ★★★ ★★ ★★★ ★★★★★ ★★ ★★★★

Expressive power ★ ★★★★ ★★ ★★★★★ ★★★ ★★★★

Ease of maintenance ★★★★ ★★★★ ★★★★ ★★★ ★ ★★★★

Longevity ★★★★★ ★★★★ ★★★ ★★★ ★ ★

Runtime efficiency ★★★★★ ★★★★★ ★★★ ★★ ★ ★★★★

Library/module availability ★★★★ ★★★★ ★★★ ★★★★ ★★★★ ★★

Low-level interface ★★★★★ ★★★★★ ★★ ★★★ ★ ★★★★

Connectivity support ★★ ★★★ / ★★★★★1 ★★★★ ★★★★★ ★★★★★ ★★

Graphics support ★★★★ ★★★★★ ★★★ ★★★ ★★★★★ ★

Developer community ★★★ ★★★ ★ / ★★★★2 ★★★★ ★★★★★ ★★

★ is the lowest ranking while ★★★★★ is the highest. Please refer to technology acronyms in Appendix A

1 Provides high level of connectivity and networking support when platform libraries included
2 Java Developer community exclusive of Android (low) and inclusive of Android (high)

SOFTWARE
STACK

25 The Qt Company | Embedded product planning and requirements guide

GUI framework
One of the most important pieces in your technology stack is
your graphical user interface (GUI). The GUI framework that your
application uses can affect more than just what the application
looks like, but also what capabilities you can implement, how
fast you can bring your product to market, and what platforms
you can support. Whatever you can do with someone else’s prebuilt
and pre-tested code is something you don’t have to design, code,
and test yourself.

STRONG CROSS-PLATFORM GUIS HELP YOUR PRODUCT IN SEVERAL WAYS

TIME TO MARKET.
A tool that has broad pre-
packaged capabilities, many
programmer-oriented
features, and an active,
supportive community can
make developers dramatically
more productive and get
products to market faster.

UNIFIED EXPERIENCE.
Good tooling can provide the
same experience to users
regardless of the platform
they use, letting them use all
platforms consistently.

CODE REUSE.
Consistency of features, APIs,
build environments, and asset
management between
platforms allows developers to
easily move code between
embedded, mobile, and
desktop solutions.

EASE OF DEVELOPMENT.
Strong cross-platform
toolchains allow developers
to use their preferred
environments - where they’re
more productive – rather than
forcing them to develop or
build on each supported target.

Cross-platform
A key characteristic of your GUI framework is its cross-platform capability. How many
platforms does it support, and does it support them all consistently? You’ll need this
if you ever switch hardware, need to support multiple OSes, or share source between your
embedded product and your mobile or desktop companion apps.

Growth and change are inevitable, so don’t pick just based on today’s platform requirements.
Look for GUI frameworks that support a wide variety of desktop OSes (Linux, MacOS, Windows),
mobile OSes (Android, iOS), and embedded OSes (QNX, INTEGRITY, Linux/Wayland, Linux/X11,
UWP, VxWorks) – as well as numerous hardware architectures and platforms.

SOFTWARE
STACK

26 The Qt Company | Embedded product planning and requirements guide

Components
Every GUI framework provides support for more than just widgets; look for
variety here too. Look for frameworks with a plethora of component options
like 2D and 3D design and visualization, embedded browsers, peripheral
support, common network protocols, internationalization, full multimedia
support, database integration, sensor access, charting – whatever pre-built
pieces can help off-load development from your staff.

Language
Frameworks can provide APIs for different languages, which lets your
development team write in the language in which they’re most productive.
It also gives developers the flexibility to pick the best language for the job.
For example, if your framework supports both C++ and Python, the team can
choose C++ when performance is paramount and Python when development
speed is the priority.

Development support
Look for GUI frameworks that either provide their own IDE, or have plug-ins
for popular IDEs like VSCode, Visual Studio, or Eclipse. It’s essential your UI
be easy to design, build, test, and debug. A specialized development
environment is also key.

LOOK AND FEEL:
OS, FRAMEWORK, OR CUSTOM
There will always be debates on the merits of your product’s look
and feel. Should it use OS-specific widgets, controls provided by your
framework, or a custom look? Unfortunately, a platform-provided UI isn’t
always available – many embedded products use Linux, which has no
default UI. Not to mention that if your product runs on multiple OSes,
each platform will look different from the other. We feel that picking a
UI that’s universally understood, clean, and attractive is usually the best
overall compromise – whether custom built by you or provided by the
framework. It will help you maintain a consistent and branded look
and feel across your entire product line.

SOFTWARE
STACK

27 The Qt Company | Embedded product planning and requirements guide

Headless UIs
Does it make sense for your embedded device to have no screen? Especially for IoT
products, the answer is often “yes.” A headless product delivers its UI to a user’s
browser, letting the product still offer a great user experience at a far lower cost.

You don’t have to build your remote UI out of raw HTML, CSS, and JavaScript –
and in this day and age, you shouldn’t. There are several JavaScript frameworks
that take the effort out of developing attractive browser-based UIs. Some GUI
frameworks will even let you export their UI code with either WebGL or
WebAssembly, so that even non-web-based GUI tools can offer a headless
browser-based experience.

SOFTWARE
STACK

28 The Qt Company | Embedded product planning and requirements guide

Libraries
Application software needs a lot more than just a GUI. Your
product might need lots of pre-built and pre-tested libraries:
network protocols, JSON and/or XML parsing, machine
learning, matrix math, fast Fourier transforms (FFTs), random
number generators, cryptography, multi-threading support,
image processing, regular expressions, database support, and
much more.

Most of these things aren’t simple, and the more complex the
code, the more you should depend on software that has
stood the test of time than try to write it yourself. You may be
able to get many pre-packaged libraries already included with
your GUI framework. You may also need to incorporate a
number of well-supported external libraries like Boost,
Apache Portable Runtime (APR), NumPy, TensorFlow, or many
others – depending on your implementation language.

Regardless of what features you require, look for the smallest
set of libraries that can comprehensively meet your needs
with compatible and easily comprehensible APIs and excellent
documentation.

SOFTWARE
STACK

29 The Qt Company | Embedded product planning and requirements guide

HARDWARE
Now that we’ve investigated the software requirements, it’s time to
investigate the hardware. Many of the product features or roadmap futures
will solidify your hardware choices. For example, if the product needs fluid
3D animations, you had better pick something with hardware-accelerated
graphics. If it needs a fast mobile connection, you’ll need either WiFi ac,
USB, or both. If it has an interaction model that includes gestures, touch,
or voice, you’ll need to include the necessary hardware and sensors.

Let’s look at the kinds of hardware choices we need to make.

HARDWARE

30 The Qt Company | Embedded product planning and requirements guide

HARDWARE

Product line and scalability
The chips behind an embedded system can have a tremendous range of
capability, from 3 GHz 64-bit processors with 16 cores and hardware-
accelerated multi-display 4K graphics processing units (GPUs) down to tiny 8-bit
micros with four pins of input/output (I/O).

At this point, you should have an idea of the range of your product’s current and
future requirements. Pick an initial hardware choice that can encompass the
breadth of your product scope within a compatible family of parts. It’s
best to consider systems and architectures that have both high- and low-end
options. Pick components you can reuse across multiple products in a product

line to take advantage of the bigger volumes that this will give you. And if
your industry builds products with long lifespans, make sure that the parts
you pick will be available for years to come.

 That said, be mindful of the minimal processing, speed, and memory
requirements that your software stack will demand from the hardware.
Don’t let downward cost pressure trap you into choosing underpowered
hardware, since a forced hardware migration late in the development cycle
will be even costlier.

31 The Qt Company | Embedded product planning and requirements guide

SoC/CPU
The central processing unit (CPU) of your system on a chip (SoC) is probably the most important, most impactful, and most expensive hardware component in an
embedded system. It can also lock you into decisions for your entire product family. Here’s a table of some of the most capable and popular off-the-shelf SoC eval boards.

 AMD Intel NXP Renesas TI
Eval board Kontron D3713-V4 mITX Avnet BOX NUC6CAYS AJL NXP i.MX 8 QuadMax MEK R-Car H3 Starter Kit TI AM572x EVM
SoC* AMD Ryzen V1807B Intel Apollo Lake

(Celeron J3455)
NXP i.MX8 R-CAR H3 AM5728

Memory 4 DDR4, 2 DIMM
(up to 32GB), ECC option

2GB onboard DDR
(up to 8GB), 32GB eMMC

LPDDR4 (x64), 32GB eMMC 384K sys RAM, DDR4,
80MB onboard flash,
8GB eMMC, microSD

2GB DDR3L, 4GB eMMC,
microSD

Peripherals HDMI, 4 x DP++, 4K, Vega
GPU, PCIe, SATA, audio,
GigE, USB 3.1+2.0

HDMI, Intel HD 500 GPU,
audio, GigE, PCIe, SATA,
USB 3.0 + 2.0, WiFi ac, BT,

MIPI, LVDS, 4K, PMIC, GPU,
PCIe, audio, GigE, USB 3.0,
CAN, up to 4 HDMI displays

HDMI, PowerVR GPU, LVDS,
WiFi, BT, audio, Eth 10/100,
USB 2.0

7" capacitive touch screen,
HDMI, audio, PowerVR
GPU, GigE, SATA, MiniPCIe,
USB 3.0

Architecture x86-64 x86-64 ARM-64 ARM-64 ARM-32
Processing
power

V1807B x 4 core @ 3.8GHz J3455 x 4 core @ 1.5GHz A72 x 2 core @ 1.6 GHz;
A53 x 4 core @ 1.2 GHz;
M4 x 2 core @ 266 MHz

A57 x 4 core @ 1.5 GHz;
A53 x 4 core @ 1.2 GHz

A15 x 2 core @ 1.5GHz,
M4 x 2 core

Use cases Large Large Large Large Medium
Power draw ★ ★ ★★ ★★ ★★★

Longevity ★★★ ★★★ ★★★★★ ★★★★★ ★★★★★

Unique
features

Up to 4 displays @ 4K NUC is mini-PC, but SoC
is embedded- compatible

Accel, gyro, pressure,
light sensors

Automotive, EAVB,
440 pin expansion

Camera option,
2 x C66x DSPs

★ is the lowest ranking while ★★★★★ is the highest. Please refer to technology acronyms in Appendix A

* SoCs may include additional features that are unexposed by an eval board.

HARDWARE

32 The Qt Company | Embedded product planning and requirements guide

SBC
Maybe your product can be made without a custom circuit board. If so, there are a wide variety of single-board computer (SBC) designs available, as outlined below.

Broadcom Intel Nvidia Rockchip TI Qualcomm
SBC Raspberry Pi 4 Model B Radxa Rock Pi X Jetson TX2 Pine64 ROCKPro64 BeagleBoard X-15 Arduino Yún 2
SoC* Intel Cherry Trail Tegra X2 Rockchip RK3399 SOC Sitara AM5728 QC Atheros AR9331
Memory 8GB RAM, microSD 4GB RAM, 32GB flash,

microSD
8GB RAM, 32GB
eMMC

LPDDR4 (up to 4GB),
eMMC, microSD

2GB RAM, 4GB flash,
microSD

64MB RAM,
16MB flash, microSD

Peripherals µHDMI, 4K, MIPI,
VideoCore VI GPU,
WiFi ac, GigE,
USB 3.0+2.0, BT 5.0

Intel Gen8 GPU, HDMI,
audio, WiFi ac, GigE,
USB 3.0+2.0, BT 4.2

HDMI 2.0, 4K,
GP10B GPU, GigE,
MIPI, 6 cameras,
USB 3.0+2.0

4K, MIPI, Mali GPU,
audio, GigE, USB
3.0+2.0,

HDMI, PowerVR GPU,
audio, GigE, SATA,
USB 3.0+2.0

Audio, 100Eth,
WiFi b/g/n, USB 2.0

Architecture ARM-32 x86-64 ARM-64 ARM-64 ARM-32 MIPS32
Processing
power

A72 x 4 core @
1.5GHz

Atom x 4 core @
1.44GHz

Denver 2 x 2 core @
2.0GHz, A57 x 4 core
@ 2.0 GHz

A72 x 2 core @
2.0GHz, A53 x 4 core
@ 2.0GHz

A15 x 2 core @
1.5GHz; M4 x 2 core @
212 MHz

24K @ 400MHz

Use cases Medium Large Large Medium Medium Small
Power draw ★★★ ★ ★★★ ★★★ ★★★ ★★★★★

Longevity ★★★★ ★★ ★★ ★★★★ ★★★ ★★

Unique
features

Expansion ecosystem Windows compatible 256 CUDA cores for AI
or comp vision, video
encoder/decoders

Wifi ac + BT and touch
panel optional
modules, big.LITTLE
arch for low power

2 TMS DSPs, 4 x PRU
for low-latency I/O
control

ATmega32U4 micro on
board

★ is the lowest ranking while ★★★★★ is the highest. Please refer to technology acronyms in Appendix A

* SoCs may include additional features that are unexposed by an eval board.

HARDWARE

33 The Qt Company | Embedded product planning and requirements guide

RAM
Following the CPU, RAM is often the second most expensive component
on an embedded board. If your embedded device doesn’t have the luxury
of abundant random-access memory (RAM), you carry the risk that your
application eventually may not fit into available memory. To discover these
show-stopper conditions early, run each of the biggest memory consumers
in your system (OS, graphical UI, database, etc.) on your target hardware
and independently under a test environment that mirrors your real runtime
environment as close as you’re able. Carefully track their memory
high-water marks and add them all up with a sizable slop factor.

You need good tools to help you understand memory usage during the
application’s lifecycle so you can pinpoint the biggest memory-hogging
components to focus on. With some preliminary data that follows your use
patterns, it also may guide you in setting memory-impacting application
configurations in the way that they’ll eventually need to be set for production.
This may include RAM set aside for purposes like graphics display buffers,
audio buffers, or disk caches.

MEMORY TOOLS
It’s not just other people’s software – don’t
forget to test your app to make sure that it isn’t
the cause of memory problems. Tools like
Cppcheck, heob, GammaRay, or valgrind can be
invaluable to perform static and runtime
analysis of your code and find excessive memory
allocations or memory leaks.

HARDWARE

https://doc.qt.io/qtcreator/creator-cppcheck.html
https://doc.qt.io/qtcreator/creator-heob.html
https://github.com/KDAB/GammaRay
https://doc.qt.io/qtcreator/creator-valgrind-overview.html

34 The Qt Company | Embedded product planning and requirements guide

Flash
Most boards can use microSD cards or another external flash interface,
allowing engineering staff to develop with plenty of spare disk space yet
optimize for the needed capacity when development is over. A bigger challenge
with flash is often its speed, and any disk-bound applications will suffer unless
they’re using reasonably fast flash.

In secure digital (SD) card lingo (whether standard, mini, or micro), the class or
video class designation indicates how many MB/second can be written; a class
10 card can write 10MB/sec, and a V90 card can write 90MB/sec. It can be
useful to have multiple microSD cards of different classes available. This allows
simple measurements of the impact of flash speed by swapping out different
memory cards, letting you determine the best cost versus speed tradeoff.

Having said this, if your evaluation board has on-board flash, you’ll want
to maximize your use of it – it will almost always provide better redundance
and performance than an SD card.

FORMATTING YOUR FLASH
Flash file systems can employ very different strategies and
trade-offs to manage device wear leveling, error detection/
correction, and crash resilience. Try testing your app under
different file systems to see which one performs best, especially
if your app relies on any of the following behaviors:

Fast bootup
speeds

High-frequency
continual writes

Performant disk
compression

High-speed
bulk reads

Huge numbers
of small files

Speedy
directory scans

HARDWARE

35 The Qt Company | Embedded product planning and requirements guide

MCU
Today’s microcontroller units (MCUs) are very capable and getting more so – a perfect fit if you don’t need maximum horsepower. Because these chips generally
don’t have a memory management unit (MMU), you’ll need to either run your application bare metal or pick an OS that is able to support a non-MMU chip like
Azure RTOS ThreadX or Amazon FreeRTOS. You’ll also need to be especially careful with RAM and Flash use. Here we look at microcontrollers with a variety
of capabilities and architectures.

 Microchip NXP Renesas ST TI
Eval board PIC32MZ Embedded

Graphics with Stacked
DRAM Starter Kit

i.MX RT 1170 EVK RH850/ D1M1A 32F769I-DISC0
discovery kit

C2000 Delfino MCU
F28379D LaunchPad

MCU PIC32MZ DA i.MX RT 1176 DVMAA RH850 G3M STM32F7 TMS320-F28379D
Memory 32MB SDRAM, 4MB flash,

microSD
64MB RAM, 336MB flash,
SD card

4MB RAM, 5MB flash,
DDR2, ECC option

532KB RAM, 2MB flash,
microSD

204KB RAM, 1MB flash

Peripherals 5.0" WVGA, 2D GPU, audio,
Eth 10/100, USB 2.0, CAN,
6 x SPI, ADC

5.5" 720p display, OpenVG
GPU, MIPI, audio, USB, CAN,
GigE, EAVB, SIM

2D GPU, sprites, LVTTL vid
in, audio, 2 x I2C, 6 x CSI,
3 x CAN, Eth 10/100, EAVB

4" touch display, 2D GPU,
MIPI, audio, USB, 4 x I2C,
6 x SPI, 3 x CAN, Eth 10/100

USB, ADC/DACs, PWMs,
CAN

Architecture MIPS32 Cortex-M7 + M4 RH850 Cortex-M7 C28X
Processor
speed

252MHz M7 @ 1GHz, M4 @
400MHz

240MHZ 216MHz 200MHz x 2

Temperature
rating

–40 to 125ºC –40 to 125ºC -40 to +150 ºC –40 to +105 ºC –40 to 125ºC

Power draw ★★★★ ★★★ ★★★★ ★★★★ ★★★★

Longevity ★★★★ ★★★ ★★★ ★★★ ★★★★

Unique
features

Display through MEB
expansion module, crypto
option avail, Raspberry Pi
header

Mag + accel sensors,
Arduino header

Automotive opt WiFi module, Arduino
header

2 CLA FPUs, Trig + Complex
math units, BoosterPack
header, no graphics support

★ is the lowest ranking while ★★★★★ is the highest. Please refer to technology acronyms in Appendix A

HARDWARE

36 The Qt Company | Embedded product planning and requirements guide

User I/O
Your user interface and input/output (I/O) mechanisms are one of the biggest areas of product differentiation, but they can also drive cost and complexity into your
product. Here’s a table of factors to consider in planning how your devices talk to your users.

Touch screen 2D Touch screen 3D Audio Voice Physical controls Haptic controls Gestures
Hardware Screen,

capacitive plate
Screen, capacitive
plate, graphics
processing unit
(GPU)

Speakers, digital
analog converter
(DAC)

Mic, analog digital
converter (ADC),
speakers, DAC,
voice assistant
interface

Rotary knobs,
switches, buttons,
sliders, light
emitting diode
(LED) indicators

Rotary knobs,
switches, motors

Camera,
proximity/
pressure sensors,
IR camera, lidar

Pricing $$$$$ $$$$$ $ $$$$ $ $$ $$$$
Communication
richness ★★★★ ★★★★★ ★★ ★★★★ ★ ★½ ★

Speed of users
to understand
interface intent

★★★★★ ★★★★★ ★★ ★★ ★★★ ★★★ ★★

Ability to be
self-explanatory ★★★★ ★★★★ ★★★ ★★ ★★★ ★★★ ★

Ability to use
without training ★★ ★ ★★★★★ ★★ ★★★★★ ★★★★ ★★

Ease of
internationalization ★★★★★ ★★★★★ ★★ ★★ ★★★★ ★★★★ ★★★

Hygiene for
multi-user use ★ ★ ★★★★★ ★★★★★ ★ ★ ★★★★★

★ is the lowest ranking while ★★★★★ is the highest. Please refer to technology acronyms in Appendix A

HARDWARE

37 The Qt Company | Embedded product planning and requirements guide

Graphics
Your choice of graphics processing unit (GPU) is nearly always built-in to your SoC,
so your graphics performance usually comes down to the quality of your graphics
framework and display pipeline. Unless, of course, you’re designing your own
hardware. If this is the case, you must still be very careful to pick CPU and GPU
combinations that have good existing OS and driver support. Creating your own
graphics drivers is not at all recommended (and may not even be possible).

Every unique application generates different demands on the GPU, and real-world
benchmarks are the only way to guarantee any particular metrics are met. In
absence of a side-by-side specific comparison, our preferred graphical API
standards are (in order): Vulkan, DirectX, OpenGL, OpenGL ES.

There can be notable performance differences between graphical API standards
in terms of frame rate, GPU and CPU load, battery life, and excess heat. It’s great
if your GUI framework gives you the option to pick which underlying standard
it uses to do its rendering. That allows your GUI code to stay independent of
graphical standards. You can make measurements for your specific application
and take advantage of performance gains if you need to.

Although 3D GPUs are the most common, if you’re creating a standard UI with 2D
elements, a 2D or 2.5D GPU might provide all the acceleration you need. With bit
blit engines, layering and compositors, anti-aliasing, and font glyph rendering,
these GPUs can speed the process of translating application rendering instructions
into user-visible pixels.

HARDWARE

38 The Qt Company | Embedded product planning and requirements guide

Displays
Could your product stand out with a distinctive display? Quite probably. Here are a variety of ways to wow your customers.

TFT LCD PMOLED AMOLED QLED E-paper
Description Thin film transistor liquid

crystal display
Passive-matrix organic
light-emitting diode

Active-matrix organic
light-emitting diode

Quantum light emitting
diode

Electronic paper

Readability in
bright light ★★★ ★★★★ ★★★★ ★★★★ ★★★★★

Readability in
darkness ★★★★ ★★★★★ ★★★★★ ★★★★★ ★

Update speed ★★★★★ ★★ ★★★★★ ★★★★★ ★

Color reproduction ★★★★ ★★★ ★★★★★ ★★★★★ ★

Contrast ★★★ ★★★★★ ★★★★★ ★★★★★ ★★★★

Viewing angle ★★★ ★★★★ ★★★ ★★★★ ★★★★★

Power consumption ★ ★★ ★★★★ ★★★ ★★★★★

Durability ★★★★★ ★★ ★★★ ★★★★ ★★★★★

Size 1" – 100" 0.5" – 6" 1" – 18" TV sizes 1" – 10"
Pricing $$ $$$ $$$$$? $
Notes Currently dominates

display technology. Reliant
on backlight to be visible
under most conditions
(very bright backlights can
be used in sunlight).

Cheaper to manufacture
than AMOLED, but higher
current draw and slower to
refresh. High current leads
to quicker degradation.

Great color gamut and
readability, although RGB
components degrade
unevenly and are subject
to burn-in.

Advantages of AMOLED
but eliminates color
instability. Not yet
available in embedded
applications although
planned by Samsung.

Usually monochromatic,
but some color variants
available. Power
consumed only when
image changes.

★ is the lowest ranking while ★★★★★ is the highest. Please refer to technology acronyms in Appendix A

HARDWARE

39 The Qt Company | Embedded product planning and requirements guide

WRAP-UP
Hopefully this guide will be useful in the planning process of your embedded
or IoT device. While we’ve tried to cover most of the basics, new products
become available all the time and no single guide can contain all the possible
choices you might make. Our consultants and engineers have experience in
helping companies build automotive, avionics, medical, industrial, consumer
electronics, mobile apps, games, and much more. If you need some advice
on what should go into your next project, we’re happy to lend a hand.

QT EXPERIENCE
Although this is intended to be an impartial guide that should be useful regardless of your component
selection, our development of the Qt software portfolio incorporates the many lessons we’ve learned
from our experience helping companies plan products. If you’d like more information about it, you
might be interested in these links:

Download Qt | Getting started | Product overview | Resource center | Blog

WRAP-UP

https://www.qt.io/download
https://www.qt.io/developers
https://www.qt.io/product
https://resources.qt.io/
https://www.qt.io/blog

40 The Qt Company | Embedded product planning and requirements guide

Appendix A – Acronyms, Initialisms, and Abbreviations
2D – 2 dimensional
3D – 3 dimensional
4K – 4K resolution
ABI – Application binary interface
ADC – Analog digital converter
AI – Artificial intelligence
AMOLED – Active-matrix organic

light-emitting diode
API – Application programming interface
APR – Apache portable runtime
BT - Bluetooth
CAN – Controller area network
CI – Continuous integration
CLA – Carry-lookahead adder
CPU – Central processing unit
CSI – Camera serial interface
CSS – Cascading style sheets
CUDA – Compute unified device architecture (Nvidia)

DAC – Digital analog converter
DDR – Double data rate
DDR2 – Double data rate 2
DDR3L – Double data rate 3 low voltage
DDR4 – Double data rate 4
DIMM – Dual in-line memory module
DP++ – DisplayPort dual-mode
DSP – Digital signal processor
E-paper – Electronic paper
EAVB – Ethernet audio visual bridging
ECC – Error correcting code
eMMC – Embedded multi-media card
Eth – Ethernet
Eval – Evaluation
FFT - Fast Fourier transform
FPU – Floating-point processing unit
GB – Gigabyte (one billion bytes)
GDP – Gross domestic product
GHz – Gigahertz

GigE – Gigabyte Ethernet
GPU – Graphics processing unit
GUI – Graphical user interface
HDMI – High-definition multimedia interface
HTML5 – Hypertext markup language 5
IDE – Integrated development environment
LCD – Liquid crystal display
LED – Light emitting diode
LPDDR4 – Low-power double data rate 4
LVDS – Low-voltage differential signaling
LVTTL – Low-voltage transistor-transistor logic
MB – Megabyte (one million bytes)
MCU – Microcontroller unit
MHz - Megahertz
Mic – Microphone
microSD – Micro secure digital
MiniPCIe – Mini peripheral component

interconnect express

41 The Qt Company | Embedded product planning and requirements guide

MIPI – Mobile industry processor interface
MMU – Memory management unit
NUC – Next unit of computing (Intel)
OpenGL – Open graphics library
OpenGL ES – Open graphics library

embedded systems
OS – Operating system
OTA – Over the air
PCIe – Peripheral component interconnect express
PMIC – Power management integrated circuit
PMOLED – Passive-matrix organic

light-emitting diode
POSIX – Portable operating system interface
PRU – Programmable real-time unit
PWM – Pulse width modulator
QA – Quality assurance
QLED – Quantum light emitting diode
QML – Qt modeling language
RAM – Random access memory
RGB – Red green blue
RTOS – Real-time operating system
SATA – Serial AT attachment

SBC – Single board computer
SD – Secure digital
SDRAM – Synchronous dynamic

random-access memory
SoC – System on a chip
SPI – Serial peripheral interface
TFT – Thin film transistor
TI – Texas Instruments
TMS – TMS320 series DSP (TI)
TV – Television
UI – User interface
USB – Universal serial bus
UWP – Universal Windows platform (Microsoft)
UX – User experience
V90 – SD association video speed class 90

(90MB/sec)
WebGL – Web graphics library
WiFi – IEEE 802.11 wireless protocol
WiFi ac – IEEE 802.11ac-2013 or WiFi 5
WYSIWYG - What you see is what you get
µHDMI – Micro high-definition multimedia interface

ABOUT THE QT COMPANY
The Qt Company is responsible for all Qt activities, including product development, commercial and open
source licensing together with the Qt Project under the open governance model. Together with our licensing,
support and services capabilities, we operate with the mission to work closely with developers to ensure
that their Qt projects are deployed on time, within budget, and with a competitive advantage.

The Qt Company’s goal is to provide desktop, embedded, and mobile developers and companies with the
most powerful cross-platform UI and application framework. Together with its licensing, support and services
capabilities, The Qt Company operates with the mission to work closely with developers.

www.qt.io

© 2021 The Qt Company

http://www.qt.io

	Button 1:
	Button 16:
	Page 2:
	Page 3:

	Button 17:
	Page 2:
	Page 3:

	Button 10:
	Button 11:
	Button 12:
	Button 13:
	Button 14:
	Button 15:
	Button 18:
	Page 4:
	Page 6:
	Page 13:
	Page 21:
	Page 29:
	Page 39:

	Button 19:
	Page 4:
	Page 6:
	Page 13:
	Page 21:
	Page 29:
	Page 39:

	Button 98:
	Button 99:
	Button 100:
	Button 101:
	Button 102:
	Button 8:
	Page 5:
	Page 7:
	Page 8:
	Page 9:
	Page 10:
	Page 11:
	Page 12:
	Page 14:
	Page 15:
	Page 16:
	Page 17:
	Page 18:
	Page 19:
	Page 20:
	Page 22:
	Page 23:
	Page 24:
	Page 25:
	Page 26:
	Page 27:
	Page 28:
	Page 30:
	Page 31:
	Page 32:
	Page 33:
	Page 34:
	Page 35:
	Page 36:
	Page 37:
	Page 38:
	Page 40:
	Page 41:

	Button 9:
	Page 5:
	Page 7:
	Page 8:
	Page 9:
	Page 10:
	Page 11:
	Page 12:
	Page 14:
	Page 15:
	Page 16:
	Page 17:
	Page 18:
	Page 19:
	Page 20:
	Page 22:
	Page 23:
	Page 24:
	Page 25:
	Page 26:
	Page 27:
	Page 28:
	Page 30:
	Page 31:
	Page 32:
	Page 33:
	Page 34:
	Page 35:
	Page 36:
	Page 37:
	Page 38:
	Page 40:
	Page 41:

	Button 3:
	Page 5:
	Page 14:
	Page 15:
	Page 16:
	Page 17:
	Page 18:
	Page 19:
	Page 20:
	Page 22:
	Page 23:
	Page 24:
	Page 25:
	Page 26:
	Page 27:
	Page 28:
	Page 30:
	Page 31:
	Page 32:
	Page 33:
	Page 34:
	Page 35:
	Page 36:
	Page 37:
	Page 38:
	Page 40:
	Page 41:

	Button 4:
	Page 5:
	Page 7:
	Page 8:
	Page 9:
	Page 10:
	Page 11:
	Page 12:
	Page 22:
	Page 23:
	Page 24:
	Page 25:
	Page 26:
	Page 27:
	Page 28:
	Page 30:
	Page 31:
	Page 32:
	Page 33:
	Page 34:
	Page 35:
	Page 36:
	Page 37:
	Page 38:
	Page 40:
	Page 41:

	Button 5:
	Page 5:
	Page 7:
	Page 8:
	Page 9:
	Page 10:
	Page 11:
	Page 12:
	Page 14:
	Page 15:
	Page 16:
	Page 17:
	Page 18:
	Page 19:
	Page 20:
	Page 30:
	Page 31:
	Page 32:
	Page 33:
	Page 34:
	Page 35:
	Page 36:
	Page 37:
	Page 38:
	Page 40:
	Page 41:

	Button 6:
	Page 5:
	Page 7:
	Page 8:
	Page 9:
	Page 10:
	Page 11:
	Page 12:
	Page 14:
	Page 15:
	Page 16:
	Page 17:
	Page 18:
	Page 19:
	Page 20:
	Page 22:
	Page 23:
	Page 24:
	Page 25:
	Page 26:
	Page 27:
	Page 28:
	Page 40:
	Page 41:

	Button 7:
	Page 5:
	Page 7:
	Page 8:
	Page 9:
	Page 10:
	Page 11:
	Page 12:
	Page 14:
	Page 15:
	Page 16:
	Page 17:
	Page 18:
	Page 19:
	Page 20:
	Page 22:
	Page 23:
	Page 24:
	Page 25:
	Page 26:
	Page 27:
	Page 28:
	Page 30:
	Page 31:
	Page 32:
	Page 33:
	Page 34:
	Page 35:
	Page 36:
	Page 37:
	Page 38:
	Page 40:
	Page 41:

	Button 32:
	Button 93:
	Button 94:
	Button 95:
	Button 96:
	Button 2:
	Page 7:
	Page 8:
	Page 9:
	Page 10:
	Page 11:
	Page 12:
	Page 14:
	Page 15:
	Page 16:
	Page 17:
	Page 18:
	Page 19:
	Page 20:
	Page 22:
	Page 23:
	Page 24:
	Page 25:
	Page 26:
	Page 27:
	Page 28:
	Page 30:
	Page 31:
	Page 32:
	Page 33:
	Page 34:
	Page 35:
	Page 36:
	Page 37:
	Page 38:
	Page 40:
	Page 41:

	Button 103:
	Button 104:
	Button 106:
	Button 107:
	Button 108:
	Button 109:
	Button 110:
	Button 111:
	Button 113:
	Button 114:
	Button 115:
	Button 116:
	Button 117:
	Button 118:
	Button 120:
	Button 121:
	Button 122:
	Button 123:
	Button 124:
	Button 125:

