
The CQRS/ES Playbook 
Architecture Modernization Strategies 

for CxOs, Architects and Development Teams

Allard Buijze & Vijay Nair



2The CQRS/ES Playbook

It has been very difficult to ignore the twin patterns that 

seem to be all over the place of late - “CQRS/ES” (Command Query Responsibility 

Separation and Event Sourcing). They have taken a prominent mindshare at 

Conferences, you see a lot more literature coming out related to these patterns 

- Books, Blog Posts, Articles, Customer Case Studies and even within internal 

organizational summits these patterns make a beeline towards the front whenever 

the topic of Architecture Modernization comes up.

And as is the case with any other technology adoption, there are two paths that 

are generally taken - On one side, there are the “fence-sitters”, organizations that 

are sufficiently intrigued by the promise of a new technology, have read a ton of 

literature, done some proof-of-concepts but are a bit hesitant to take the next step. 

Well, haven’t we all been promised the holy grail for software development before? 

On the other side, you have the “fast-movers”, organizations that have a culture 

of uptake of new technologies, apply it in smaller measures and then gradually 

expand its adoption by implementing a cycle of optimization (e.g. Best Practices/

Lessons Learnt/Developer Experience/Automation).

Of course, not all technology adoption results in a happily ever after story - The 

adoption of these patterns do go awry and the trough of disillusionment (courtesy 

Gartner) is real. But are the patterns to blame? Probably not! There could be 

other factors at play too - misinterpretation of these patterns/poor organizational 

readiness/choice of a wrong tool to help do the job and so on.

https://axoniq.io/resources/axon-core-principles


3The CQRS/ES Playbook

A lot of factors go in to ensure successful adoption of any technology and 

particularly when you choose to implement something as fundamental as CQRS/ES 

which has an impact across all three main architectural characteristics - structural/

operational and cross-cutting, you need to be extra prepared to get it right.

This paper lays down the proper foundational decisions that needs to be taken 

across all levels of the organization to help implement CQRS/ES successfully. 

Starting off with an holistic overview of these patterns, it provides a guided 

pathway for organizations that fall in both buckets - the fence sitters will understand 

what needs to be done for taking that leap of faith, while the fast movers will 

understand what needs to be done to optimize the adoption as well as possibly 

getting a derailed project back on track to successfully recoup the investment. 

 

Let’s begin.



4The CQRS/ES Playbook

So What Exactly is CQRS/ES?

Before we deep dive into it, a bit of history. The genesis of these 

patterns can be traced back to DDD or Domain Driven Design as we all know it. In 

a nutshell, DDD aims to provide answers to two fundamental questions that have 

plagued the software development field for a long time.

• How do we describe any Business Domain (e.g. Banking/Retail/Hospitality) 

in a language that is understandable across the Enterprise – Business and 

Technology?

• How do we decompose software systems into cohesive modules (or 

components and microservices) that are loosely coupled?

DDD provides a systematic approach to Application Design by providing a set 

of strategic and tactical patterns to breakdown the complexity associated with 

Business Domains. DDD advocates the breaking down of any Business Domain 

into a set of problems that you would like to solve for the Domain (e.g. in Retail 

Banking you have to solve the problem of opening Checking Accounts). DDD helps 

teams then come up with something known as a “Domain Model” that can be 

https://axoniq.io/resources/architectural-concepts


5The CQRS/ES Playbook

applied to solve the problem. The Domain Model is an artifact that teams could 

use to communicate a common language as well as be a unit of deployment (e.g. as 

a Microservice) for that specific problem.

However over a period of time as the exploration of the domain started expanding 

it posed a challenging problem - that of Model Complexity. The model started 

to become big and unwieldy which resulted in it becoming difficult to maintain, 

“Model Fatigue” started becoming a real thing and finally different parts of the 

model started to have different non-functional requirements (e.g. scalability). 

Enter CQRS - CQRS or Command Query Responsibility Separation was proposed 

with the primary aim to tackle Model Complexity by dividing and conquering the 

Domain Model. Simply put, it advocates the vertical split of your Domain Model 

into two distinct partitions - a Command Model and a Query Model. The Command 

Model is focused on executing Tasks, is primarily expressed in operations (e.g. Open 

an Account) and only contains the data necessary for task execution and decision 

making. The Query Model (aka Projections) is focused on delivering information 

with data stored the way it is used (e.g. Relational/NoSQL). Suddenly the complexity 

associated with bloated Domain Models disappear due to the optimization that 

CQRS provides. The split also helps you focus on different types of NFRs for each 

side of the Domain Model e.g. certain problems might have more reads than writes 

while certain problems might be the exact opposite - CQRS offers a great way to 

help address these kind of problems.

https://axoniq.io/resources/architectural-concepts
https://axoniq.io/resources/architectural-concepts


6The CQRS/ES Playbook

However, the adoption of CQRS does present one problem that needs to be taken 

care of. How do we keep the two models in sync i.e. changes in the Command 

Model should (eventually) be reflected in the Query Model? An obvious answer 

would be “Events” which could act as the glue between the Command Model and 

the Query Model and since Events are the result of a task (e.g. Open an Account 

results in an Account Opened Event), they are tied to the Command Model.

Which brings us to the final piece of the puzzle - Event Sourcing which deals with 

the concept of immutable data. Essentially ES proposes to exclusively store the 

state of your model as a series of immutable events in a datastore rather than as 

a mutable set of records which is the more traditional way. Event Sourcing has a 

natural alignment to CQRS. Commands typically result in the Events that need 

to be stored and the same Events are also consumed to help in construction of 

various projections of the state that can then be served by Queries. In short, Event 

Sourcing without CQRS is quite difficult.

A side by side comparison of Event Sourcing Based Storage v/s Traditional Storage 

is shown below. As an example we have taken the lifecycle of an order being placed, 

confirmed, shipped and finally cancelled by the user. While in the Traditional Storage 

mechanism we store just one record which reflects the current state of the order, in an 

Event Sourcing based storage mechanism we store it as a series of immutable Events. 

Suddenly you have complete context of why your system is in a particular state 



7The CQRS/ES Playbook

because you have the complete sequence of events that led to it - An extremely 

powerful feature and the fundamental selling point of Event Sourcing.

A summary of the benefits of Event Sourcing:

• Immutability

• Reliable source of truth

• Naturalized Audit Trail

• Data Mining/Analytics

• Design Flexibility

• Temporal Reporting

• Easier to Debug

• Enhanced User Experience

• Event Driven Distributed Applications (i.e. Microservices)

• Reactive and Scalable

• Predictable Development Model

To summarize, the CQRS/ES twin patterns help build a completely new class of 

applications which are inherently Reactive, Scalable, Distributed and Event Driven 

- Essentially they become the foundational patterns for your Organization’s 

Architectural Modernization effort.



8The CQRS/ES Playbook

Rolling out a CQRS/
ES Platform within 
your organization

While the concepts are easy to understand and the benefits 

of adoption quite obvious, a big question is how do you roll this out within your 

organization? Before we layout the process, let us talk about something that we 

have coined here at AxonIQ called the CQRS/ES Capability Map. 

The Capability Map details out the essential features that are required for rolling 

out an enterprise grade CQRS/ES infrastructure across your application portfolio 

wanting to adopt these new paradigms.

The Capability Map consists of two main areas:

• A logical infrastructure i.e. an API to support CQRS/ES operations preferably 

using DDD concepts.

• A physical infrastructure to support Event Persistence/Retrieval and Message 

Routing (for Commands/Queries and Events).



9The CQRS/ES Playbook

The Map guides you in figuring out the various components that would be needed 

to be put in place to roll out the required infrastructure. A very important point 

that needs to be considered is the incorporation and implementation of a strong 

modeling and governance process as a complimentary aspect to the CQRS/ES 

component set. Event Storming/Event Modeling/Storyboard Mapping are good 

examples of modeling processes that work very well with the CQRS/ES design 

paradigms.

To summarize, rolling out a CQRS/ES platform requires the implementation of 

a set of Logical/Physical Infrastructural components complimented by a robust 

modeling/governance process.



10The CQRS/ES Playbook

The Market for Purpose-
Built CQRS/ES Platforms

Why a Purpose-Built platform?
As can be seen above, implementing the infrastructure CQRS/ES 

requires is complex. While the first tendency often is to build out these patterns 

utilizing custom built frameworks and tools, it quickly spirals out of control with a 

very high chance of failure as the various aspects of these patterns start to become 

clearer. This in turn translates into a messy architecture, poor developer experience, 

complex operational aspects resulting in a high monetary cost for organizations 

without much to show for the effort spent.

A wiser decision is to always utilize a purpose-built CQRS/ES platform. This helps 

accelerate the adoption of these patterns quickly and effectively by providing a 

complete ecosystem of tools, single infrastructure and techniques. 



11The CQRS/ES Playbook

This enables technology teams to adopt these patterns rapidly:

• Architects can implement a streamlined/enforceable architecture.

• Developers can focus on what they do best i.e. writing business code.

• Operators have a single physical infrastructure to monitor, optimize and 

automate.

• CxOs can realize significant savings while at the same time showcase real 

architecture modernization progress.

The Axon Platform
Axon is the leading purpose-built CQRS/ES platform to help rollout enterprise 

grade CQRS/ES infrastructures. Axon elevates the concept of traditional CQRS/

Event Sourcing architectures by treating every operation within an application 

(Commands/Queries and Events) as “Messages”. Axon processes these Messages 

using the Location Transparency Pattern, enabling teams to focus on getting 

right the correct boundaries for their applications, allowing them to be split into 

microservices as the requirements evolve.

The Axon Platform provides two main components:

• Axon Server (Physical Infrastructure) 
A highly scalable, distributed, and purpose-built Event Store and zero-

configuration Message Router. It is available in two editions Standard and 

Enterprise (for more advanced capabilities like Clustering).

• Axon Framework (Logical Infrastructure) 
Implements the full range of API capabilities required for Event Sourcing/

Message Routing operations. It provides the building blocks required to deal 

with all the non-functional requirements, allowing developers to focus on the 

functional aspects of their application instead.

https://axoniq.io/product-overview/axon-server
https://axoniq.io/product-overview/axon-framework


12The CQRS/ES Playbook

The Axon Platform has multiple customers across a wide range of industries who 

use it to roll out an Enterprise-Grade CQRS/ES infrastructure. An important aspect 

here is that the Axon Platform is an “Application Platform” not a “Deployment 

Platform”. Applications built with the Axon Platform can be deployed on any existing 

cloud infrastructure (e.g. K8s/OpenShift/Tanzu) that organizations currently have 

invested in.

https://axoniq.io/
https://docs.axoniq.io/reference-guide/axon-server/installation/docker-k8s/axon-server-se
https://docs.axoniq.io/reference-guide/axon-server/installation/docker-k8s/axon-server-ee#construction-of-the-image
https://tanzu.vmware.com/content/blog/netflix-built-its-own-application-generator-to-boost-dev-productivity-heres-how-you-can-too


13The CQRS/ES Playbook

Conclusion

To conclude, the CQRS/ES patterns can serve as the foundation for your 

architecture modernization efforts within your organization. The adoption of these 

patterns requires implementing a set of capabilities that these patterns prescribe. 

Utilizing a purpose-built CQRS/ES platform like Axon helps organizations reap the 

significant benefits that these patterns offer in a faster/cost optimized/streamlined 

and efficient way. 

https://axoniq.io/support-overview


axoniq.io youtube.com/c/AxonIQ github.com/AxonIQ

https://axoniq.io
https://www.youtube.com/c/AxonIQ
https://github.com/AxonIQ

