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Most organizations with a web presence build and operate 
APIs—the doorway for customers to begin their interaction 
with the company’s services. Designing, building, and 
managing these critical programs affects everyone in the 
organization, from engineers and product owners to C-suite 
executives. But the real challenge for developers and solution 
architects is creating an API platform from the ground up. 

With this practical book, you’ll learn strategies for building 
and testing REST APIs that use API gateways to combine 
offerings at the microservice level. Authors James Gough, 
Daniel Bryant, and Matthew Auburn explain how simple 
additions to this infrastructure can help engineers and 
organizations migrate toward the cloud —and open the 
opportunity to connect internal services using technologies 
like a service mesh.

• Learn API fundamentals and architectural patterns for 
building an API platform

• Use practical examples to understand how to design, build, 
and test API-based systems

• Deploy, operate, and configure key components of an API 
platform

• Use API gateways and service meshes appropriately, based 
on case studies

• Understand core security and common vulnerabilities in API 
architecture

• Secure data and APIs using threat modeling and technologies 
like OAuth2 and TLS

• Learn how to evolve existing systems toward API- and cloud-
based architectures
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Design, Operate, and Evolve 
Modern Apps by Mastering 
API Architecture
Learn how to build, manage, and secure APIs using best practices for modern 
architecture, then test your skills by following a hypothetical case study of an 
organization that replatforms a legacy app for the cloud.

API 
Fundamentals 

Explore the standards, 
schema, and specification 
of APIs and compare API 
architectures based on 
REST, gRPC, and GraphQL.

Securing 
APIs 

Study best practices from 
OWASP and STRIDE for 
protecting APIs using threat 
modeling, zero trust, and 
authentication/authorization 
principles.

Replatforming 
for the Cloud

Realize the operational 
and security benefits of 
cloud-based platforms by 
employing agile methodologies 
and continuous delivery/
verification to modernize 
an application into an 
API-driven architecture.

Managing and 
Monitoring APIs 

Learn how to build and 
manage APIs by diving 
into ingress routing, load 
balancing, and proxy 
technology in API 
gateways and service 
mesh using Kubernetes.
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Foreword

When I built my first APIs at the Financial Times, over a decade ago, there weren’t
too many of them. We were building on a monolithic architecture, and the APIs were
solely there for external third parties to get access to our content.

Now though, APIs are everywhere and they are core to your success when building a
system.

That’s because, over the last decade, a couple of things have combined to change the
way many of us do software development.

Firstly, the technology available for us changed. The rise of cloud computing gave
us self-service, on-demand provisioning. Automated build and deployment pipelines
allowed us to do continuous integration and deployment, and containers and associ‐
ated technologies like orchestration let us run large numbers of small, independent
services as a distributed system.

Why are we doing that? Because of the second thing: the research showing that
successful software development organizations have loosely coupled architectures
and autonomous, empowered teams. Successful here is defined in terms of a positive
impact on the business: increased market share, productivity, and profitability.

Our architectures now tend to be more loosely coupled, distributed, and built around
APIs. You want your APIs to be discoverable, consistent, and unlikely to cause
problems to the consumers even if they change unexpectedly or disappear. Anything
else will couple work together and slow down your teams.

In this book, James, Daniel and Matthew provide a comprehensive and practical
guide to building effective API architectures. They cover a lot of ground, from how
to build and test an individual API, through the ecosystem you deploy them into,
the ways to release and operate them effectively, and perhaps most importantly, how
to use APIs to evolve your architecture. Those first APIs I built at the Financial
Times don’t exist anymore, and we built those systems again from scratch. That’s
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costly. James, Daniel, and Matthew provide a template for how to deal with inevitable
change and evolve your systems, using APIs as a key tool.

Software architecture has been defined as those decisions that are both important and
hard to change. These are the decisions that will make your project succeed—or fail.

The authors’ focus is not on architecture in the abstract, but on how you apply
architecture within your own organizations. Deciding to adopt an API gateway or a
service mesh, and which one, is exactly the kind of hard-to-undo decision that you
should approach with caution and evaluate carefully. James, Daniel, and Matthew
give strong, opinionated guidance where they feel it is appropriate, and where the
options are less clearcut, they provide a framework to help you make the best choice
for your circumstances.

They illustrate throughout with a practical and realistic case study that takes the
concepts and shows how you actually make them work in practice. Their case study
evolves throughout the book, in the same way real systems do. The authors show that
you don’t have to do everything upfront; you can evolve your architecture piece by
piece, extracting services and adding tools like API gateways and service meshes as
you find you need them.

When I built my first APIs, I made a lot of mistakes. I wish I’d had a book like
this, to help me understand where I might trip up, and to guide me towards sensible
decisions.

I recommend this book to anyone leading work on systems where APIs play a major
role. With it, you should be able to develop a consistent set of tools and standards to
support every team building APIs in your organization.

— Sarah Wells,
Co-Chair of the QCon London conference,

independent consultant, and former
Technical Director at the Financial Times,

Reading, UK, September 2022
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Preface

Why Did We Write This Book?
In early 2020 we attended O’Reilly Software Architecture in New York, where Jim and
Matt gave a workshop on APIs and a presentation on API gateways. Jim and Daniel
know each other from the London Java Community, and like at many architecture
events, we got together to talk about our thoughts and understanding around API
architectures. As we were talking on the hallway track, several conference delegates
came up to us and chatted about their experiences with APIs. People were asking
for our thoughts and guidance on their API journey. It was at this point that we
thought writing a book on the topic of APIs would help share our discussions from
conferences with other architects.

Why Should You Read This Book?
This book has been designed to provide a complete picture on designing, operating,
and evolving an API architecture. We have shared our experience and advice through
both our writing and an accompanying case study that mimics a real-life event-
management conference system that enables attendees to view and book presentation
sessions. The case study runs throughout the book, with the goal of you exploring
how abstract concepts sometimes translate into practical application. If you want a
high-level overview of the evolution of the case study, you can find this in Chapter 10.

We also believe in allowing you to make your own decisions. To support this, we will:

• Be clear when we have a strong recommendation or guidance.•
• Highlight areas of caution and problems that you may encounter.•
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1 You will learn more about ADRs and their importance to making and documenting architectural decisions in
the Introduction.

• Supply an Architecture Decision Record (ADR) Guideline1 to help inform the•
best possible decision given the circumstances of your architecture and provide
guidance on what to consider (because sometimes the answer is “it depends”).

• Highlight references and useful articles where you can find more in-depth•
content.

The book is not just a greenfield technology book. We felt that covering existing
architectures with an evolutionary approach toward more suitable API architectures
would provide the most benefit for you. We also tried to balance this with looking
forward to newer technologies and developments in the API architecture domain.

Who This Book Is For
Although we had an initial persona in mind when creating this book, during the writ‐
ing and reviewing process three key personas emerged: the developer, an accidental
architect, and the solutions or enterprise architect. We have outlined these personas
in the following sections, with the aim that you not only identify with at least one of
them, but also so that you can look at each chapter through the different lens these
personas provide.

Developer
You have most likely been coding professionally for several years and have a good
understanding of common software development challenges, patterns, and best
practices. You are increasingly realizing that the software industry’s march toward
building service-oriented architecture (SOA) and adopting cloud services means that
building and operating APIs is fast becoming a core skill. You are keen to learn
more about designing effective APIs and testing them. You want to explore the
various implementation choices (e.g., synchronous versus asynchronous communica‐
tion) and technologies and learn how to ask the right questions and evaluate which
approach is best for a given context.

Accidental Architect
You have most likely been developing software for many years and have often
operated as a team lead or resident software architect (even if you don’t have the
official titles). You understand core architectural concepts, such as designing for high
cohesion and loose coupling, and apply these to all aspects of software development,
including design, testing, and operating systems.
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You realize that your role is increasingly focused on combining systems to meet cus‐
tomer requirements. This could include internally built applications and third-party
SaaS-type offerings. APIs play a big part in successfully integrating your systems with
external systems. You want to learn more about the supporting technologies (e.g.,
API gateway, service mesh, etc.) and also understand how to operate and secure
API-based systems.

Solutions/Enterprise Architect
You have been designing and building enterprise software systems for several years
and most likely have the word architect in your job title or role description. You are
responsible for the big picture of software delivery and typically work within the
context of a large organization or a series of large interconnected organizations.

You recognize the changes that the latest iteration of service-based architectural styles
are having on the design, integration, and governance of software, and you see APIs
are pivotal to the success of your organization’s software strategy. You are keen to
learn more about evolutionary patterns and understand how the choice of API design
and implementation will impact this. You also want to focus on the cross-functional
“ilities”—usability, maintainability, scalability, and availability—and understand how
to build API-based systems that exhibit such properties, as well as provide security.

What You Will Learn
After reading this book you will understand:

• The fundamentals of REST APIs and how to best build, version, and test APIs•
• The architectural patterns involved in building an API platform•
• The differences in managing API traffic at ingress and within service-to-service•

communication, and how to apply patterns and technologies such as API gate‐
ways and service meshes

• Threat modeling and key security considerations for APIs, such as authentica‐•
tion, authorization, and encryption

• How to evolve existing systems toward APIs and different target deployments,•
such as the cloud

And you will be able to:

• Design, build, and test API-based systems•
• Help to implement and drive an organization’s API program from an architec‐•

tural perspective
• Deploy, release, and configure key components of an API platform•
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• Deploy gateways and service meshes based on case studies•
• Identify vulnerabilities in API architecture and implement measured security•

mitigations
• Contribute to emerging API trends and the associated communities•

What This Book Is Not
We realize that APIs encompass a vast market space and we want to be clear what
this book will not cover. That doesn’t mean to say that we believe these topics are not
important; however, if we tried to cover everything we wouldn’t be able to share our
knowledge effectively with you.

We will cover application patterns for migration and modernization that will include
taking advantage of cloud platforms, but the book is not wholly focused on cloud
technologies. Many of you will have hybrid architectures or even have all of your
systems hosted in data centers. We want to ensure that we cover the design and
operational factors of API architectures that support both approaches.

The book is not tied to a specific language but will use some lightweight examples to
demonstrate approaches to building/designing APIs and their corresponding infra‐
structure. The book will focus more on the approach, and code examples will be
available in the accompanying GitHub repository.

The book does not favor one style of architecture over another, however we will discuss
situations in which architectural approaches may cause limitations to the API offer‐
ing presented.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program
elements such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.
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This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/masteringapi.

If you have a technical question or a problem using the code examples, please send an
email to bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if example code is
offered with this book, you may use it in your programs and documentation. You
do not need to contact us for permission unless you’re reproducing a significant
portion of the code. For example, writing a program that uses several chunks of code
from this book does not require permission. Selling or distributing examples from
O’Reilly books does require permission. Answering a question by citing this book
and quoting example code does not require permission. Incorporating a significant
amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “Mastering API Archi‐
tecture by James Gough, Daniel Bryant, and Matthew Auburn (O’Reilly). Copy‐
right 2023 James Gough Ltd, Big Picture Tech Ltd, and Matthew Auburn Ltd,
978-1-492-09063-2.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.
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O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit https://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/Mastering-API-Architecture.

Email bookquestions@oreilly.com to comment or ask technical questions about this
book.

For news and information about our books and courses, visit https://oreilly.com.

Find us on LinkedIn: https://linkedin.com/company/oreilly-media.

Follow us on Twitter: https://twitter.com/oreillymedia.

Watch us on YouTube: https://www.youtube.com/oreillymedia.
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Introduction

In this introduction, you will discover the basics of APIs and their potential to be
part of the architecture journey. We will introduce a lightweight definition for APIs
and their use in and out of process. In order to demonstrate the importance of APIs,
we will introduce the conference system case study, a running example that will
evolve throughout the book. Out-of-process APIs allow you to think beyond a simple
three-tiered architecture; we will introduce traffic patterns and their importance to
demonstrate this. We will outline a summary of the case study steps, allowing you to
skip ahead if an area is of interest to you straight away.

In order to present APIs and their associated ecosystem, we will use a series of
important artifacts. We will introduce the case study with C4 model diagrams and
revisit the specifics and logic behind the approach. You will also learn about the use
of Architecture Decision Records (ADRs) and the value of clearly defining decisions
across the software lifecycle. As the introduction closes, we will outline ADR Guide‐
lines—our approach to help you make decisions when the answer is “it depends.”

The Architecture Journey
Anyone who has taken a long journey will no doubt have encountered the question
(and possibly persistently) “are we there yet?” For the first few inquiries, you look
at the GPS or a route planner and provide an estimate—hoping that you don’t
encounter any delays along the way. Similarly, the journey to building API-based
architectures can be complex for developers and architects to navigate; even if there
was an Architecture GPS, what would your destination be?

Architecture is a journey without a destination, and you cannot predict how technol‐
ogies and architectural approaches will change. For example, you may not have been
able to predict service mesh technology would become so widely used, but once you
learn about its capabilities it may cause you to think about evolving your existing
architecture. It is not only technologies that influence change in architecture; new
business requirements and constraints also drive change in architectural direction.
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The culminating effect of delivering incremental value combined with new emerging
technologies leads to the concept of evolutionary architecture. Evolutionary architec‐
ture is an approach to incrementally changing an architecture, focusing on the ability
to change with speed and reducing the risk of negative impacts. Along the way, we
ask you to keep the following advice in approaching API architecture in mind:

Though architects like to be able to strategically plan for the future, the constantly
changing software development ecosystem makes that difficult. Since we can’t avoid
change, we need to exploit it.

—Building Evolutionary Architectures by Neal Ford, Rebecca Parsons, and Patrick
Kua (O’Reilly)

In many projects APIs themselves are evolutionary, requiring change as more systems
and services are integrated. Most developers have built services that focus on a single
function without considering the broader API reuse from a consumer perspective.

API-First design is an approach where developers and architects consider the func‐
tionality of their service and design an API in a consumer-centric manner. The
API consumer could be a mobile application, another service, or even an external
customer. In Chapter 1 we will review design techniques to support an API-First
approach and discover how we build APIs that are durable to change and deliver
value to a broad consumer base.

The good news is that you can start an API-driven architecture journey at any
point. If you are responsible for preexisting technical inventory, we will show you
techniques to evolve your architecture to promote the use of APIs in your platform.
On the other hand, if you are lucky and have a blank canvas to work with, we
will share with you the benefit of adopting API architectures based on our years of
experience, while also highlighting key factors in decision making.

A Brief Introduction to APIs
In the field of software architecture, there are a handful of terms that are incredibly
difficult to define. The term API, which stands for application programming inter‐
face, falls into this categorization, as the concept first surfaced as many as 80 years
ago. Terms that have been around for a significant amount of time end up being
overused and having multiple meanings in different problem spaces. We consider an
API to mean the following:
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• An API represents an abstraction of the underlying implementation.•
• An API is represented by a specification that introduces types. Developers can•

understand the specifications and use tooling to generate code in multiple lan‐
guages to implement an API consumer (software that consumes an API).

• An API has defined semantics or behavior to effectively model the exchange of•
information.

• Effective API design enables extension to customers or third parties for a busi‐•
ness integration.

Broadly speaking, APIs can be broken into two general categories depending on
whether the API invocation is in process or out of process. The process being referred
to here is an operating system (OS) process. For example, a Java method invocation
from one class to another is an in-process API invocation, as the call is handled by
the same process from which the call was made. A .NET application invocating an
external REST-like API using an HTTP library is an out-of-process API invocation,
as the call is handled by an additional external process other than the process from
which the call was made. Typically, an out-of-process API call will involve data tra‐
versing a network, potentially a local network, virtual private cloud (VPC) network,
or the internet. We will focus on the latter style of APIs; however, architects will often
encounter the requirement to remodel an in-process API to an out-of-process API. In
order to demonstrate this concept (and others), we will create a running case study
that will evolve throughout the book.

Running Example: Conference System Case Study
We have chosen to model a conference system for our case study because the domain
is easily recognizable but also provides enough complexity for modeling an evolu‐
tionary architecture. Figure I-1 visualizes the conference system at the top level,
allowing us to set the context of the architecture under discussion. The system is
used by an external customer to create their attendee account, review the conference
sessions available, and book their attendance.

Figure I-1. C4 conference system context diagram
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Let’s zoom in to the conference system box in Figure I-2. Expanding the conference
system provides us more detail about its major technical building blocks. The cus‐
tomer interacts with the web application, which invokes APIs on the conference
application. The conference application uses SQL to query the backing datastore.

Figure I-2. C4 conference system container diagram

Figure I-2 reveals that from an API perspective the most interesting functionality
is within the conference application container. Figure I-3 zooms in to this specific
container, allowing you to explore the structure and interactions.

Four major components and the database are involved in the current system. The
API Controller faces all incoming traffic from the UI and makes a decision about
where to route the request in the system. This component would also be responsible
for marshaling from the on the wire network-level representation to an object or rep‐
resentation in code. The API Controller component is intriguing from the perspective
of in-process routing and acting as a junction point or front controller pattern. For API
requests and processing, this is an important pattern; all requests pass through the
controller, which makes a decision on where the request is directed. In Chapter 3 we
will look at the potential for taking the controller out of process.

The Attendee, Booking, and Session components are involved in translating the
requests into queries and execute SQL against the database out of process. In the
existing architecture, the database is an important component, potentially enforcing
relationships—for example, constraints between bookings and sessions.
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Figure I-3. C4 conference system component diagram

Now that we have drilled down to the appropriate level of detail, let’s revisit the types
of API interactions in the case study at this point.

Types of APIs in the Conference Case Study
In Figure I-3 the Web Application to API Controller arrow is an out-of-process
call, whereas the API Controller to Attendee Component arrow is an example of an
in-process call. All interactions within the Conference Application boundary are
examples of in-process calls. The in-process invocation is well defined and restricted
by the programming language used to implement the Conference Application. The
invocation is compile-time safe (the conditions under which the exchange mecha‐
nism are enforced at the time of writing code).
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Reasons for Changing the Conference System
The current architectural approach has worked for the conference system for many
years, however the conference owner has asked for three improvements, which are
driving architectural change:

• The conference organizers would like to build a mobile application.•
• The conference organizers plan to go global with their system, running tens•

of conferences instead of one per year. In order to facilitate this expansion,
they would like to integrate with an external Call for Papers (CFP) system for
managing speakers and their application to present sessions at the conference.

• The conference organizers would like to decommission their private data center•
and instead run the conference system on a cloud platform with global reach.

Our goal is to migrate the conference system to be able to support the new require‐
ments, without impacting the existing production system or rewriting everything in
one go.

From Tiered Architecture to Modeling APIs
The starting point of the case study is a typical three-tier architecture, composed of a
UI, a server-side processing tier, and a datastore. To begin to discuss an evolutionary
architecture we need a model to think about the way API requests are processed
by the components. We need a model/abstraction that will work for both the public
cloud, virtual machines in a data center and a hybrid approach.

The abstraction of traffic will allow us to consider out-of-process interactions
between an API consumer and an API service, sometimes referred to as the API
producer. With architectural approaches like service-oriented architecture (SOA) and
microservices-based architecture, the importance of modeling API interactions is
critical. Learning about API traffic and the style of communication between compo‐
nents will be the difference between realizing the advantages of increased decoupling
or creating a maintenance nightmare.

Traffic patterns are used by data center engineers to describe net‐
work exchanges within data centers and between low-level applica‐
tions. At the API level we are using traffic patterns to describe flows
between groups of applications. For the purposes of this book, we
are referring to application and API-level traffic patterns.

Case Study: An Evolutionary Step
To start to consider traffic pattern types, it will be useful to take a small evolutionary
step in our case study architecture. In Figure I-4 a step has been taken to refactor
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1 The intention is it will be the UI accessing the ingress point. However, it is open for potential exploit.

the Attendee component into an independent service, as opposed to a package or
module within the legacy conference system. The conference system now has two
traffic flows: the interaction between the customer and the legacy conference system
and the interaction between the legacy system and the attendee system.

Figure I-4. C4 conference system context—evolutionary step

North–south traffic
In Figure I-4 interaction between the customer and the legacy conference system
is referred to a north–south traffic, and it represents an ingress flow. The customer
is using the UI, which is sending requests to the legacy conference system over
the internet. This represents a point in our network that is exposed publicly and
will be accessed by the UI.1 This means that any component handling north–south
traffic must make concrete checks about client identity and also include appropriate
challenges before allowing traffic to progress through the system. Chapter 7 will go
into detail about securing north–south API traffic.
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East–west traffic
The new interaction between the legacy conference system and the Attendee service
introduces an east–west traffic flow to our system. East–west traffic can be thought
of as service-to-service style of communication within a group of applications. Most
east–west traffic, particularly if the origin is within your wider infrastructure, can
be trusted to some degree. Although we can trust the source of the traffic, it is still
necessary to consider securing east–west traffic.

API Infrastructure and Traffic Patterns
There are two key infrastructure components present in API-based architectures,
which are key to controlling traffic. Controlling and coordinating traffic is often
described as traffic management. Generally north–south traffic will be controlled by
API gateways, the key subject for Chapter 3.

East–west traffic will often be handled by infrastructure components like Kubernetes
or service mesh, the key subject for Chapter 4. Infrastructure components like Kuber‐
netes and service mesh use network abstractions to route to services, requiring
services to run inside a managed environment. In some systems east–west traffic is
managed by the application itself and service discovery techniques are implemented
to locate other systems.

Roadmap for the Conference Case Study
Throughout the course of the book you will observe the following changes or applica‐
tions of technology to the case study:

• In Chapter 1 you will explore the design and specification of the Attendee API.•
We will also present the importance of versioning and modeling exchanges for
performance of the Attendee API.

• In Chapter 2 you will explore contract and component testing to verify behavior•
of the Attendee service. You will also see how Testcontainers can help with
integration testing.

• In Chapter 3 you will look at exposing the Attendee service to consumers using•
an API gateway. We will also demonstrate how to evolve the conference system
using an API gateway on Kubernetes.

• In Chapter 4 we will refactor the sessions functionality out of the legacy confer‐•
ence system using a service mesh. You will also learn about how service mesh
helps with routing, observability, and security.

• In Chapter 5 we will discuss feature flagging and how this can help to evolve•
the conference system and avoid a coupled deployment and release. You will also
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explore approaches for modeling releases in the conference system and we will
demonstrate the use of Argo Rollouts for the Attendee service.

• In Chapter 6 you will explore how to apply threat modeling and mitigate OWASP•
concerns in the Attendee service.

• In Chapter 7 you will look at authentication and authorization and how this is•
implemented for the Attendee service.

• In Chapter 8 you will look at establishing the Attendee service domain bound‐•
aries and how different service patterns can help.

• In Chapter 9 you will look at cloud adoption and how to move the Attendee•
service to the cloud and consider replatforming.

The case study and the planned roadmap require us to visualize architectural change
and record decisions. These are important artifacts that help to explain and plan
changes in software projects. We believe that C4 diagrams and Architecture Decision
Records (ADRs) represent a clear way of recording change.

Using C4 Diagrams
As part of introducing the case study, we revealed three types of C4 diagrams from
the C4 model. We believe C4 is the best documentation standard for communicating
architecture, context, and interactions to a diverse set of stakeholders. You may be
wondering what about UML? The Unified Modeling Language (UML) provides an
extensive dialect for communicating software architectures. A major challenge is that
the majority of what UML provides is not committed to memory by architects and
developers, and people quickly revert to boxes/circles/diamonds. It becomes a real
challenge to understand the structure of diagrams before getting into the technical
content of the discussion. Many diagrams are only committed to a project history
if someone accidentally uses a permanent marker instead of dry wipe marker by
mistake. The C4 model provides a simplified set of diagrams that act as a guide to
your project architecture at various levels of detail.

C4 Context Diagram
Figure I-1 is represented using a C4 context diagram from the C4 model. The
intention of this diagram is to set context for both a technical and nontechnical
audience. Many architecture conversations dive straight into the low-level details and
miss setting the context of the high-level interactions. Consider the implications of
getting a system context diagram wrong—the benefit of summarizing the approach
may save months of work to correct a misunderstanding.
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2 Local stubborn traits fueled this likely explanation.

C4 Container Diagram
While Figure I-1 provides the big picture of the conference system, a container
diagram helps describe the technical breakout of the major participants in the archi‐
tecture. A container in C4 is defined as “something that needs to be running in order
for the overall system to work” (for example, the conference database). Container dia‐
grams are technical in nature and build on the higher-level system context diagram.
Figure I-2, a container diagram, documents the detail of a customer interacting with
the conference system.

The conference application container in Figure I-2 is documented
as simply software. Normally a C4 container would provide more
detail into the type of container (e.g., Java Spring Application).
However in this book we will be avoiding technology specifics,
unless it helps to demonstrate a specific solution. The advantage of
APIs and indeed modern applications is that there is a significant
amount of flexibility in the solution space.

C4 Component Diagram
The C4 component diagram in Figure I-3 helps to define the roles and responsibili‐
ties within each container, along with the internal interactions. This diagram is useful
if the detail of a container is queried, and it also provides a very useful map to the
codebase. Think about the first time starting work on a new project: browsing a
self-documenting codebase is one approach—but it can be difficult to piece everything
together. A component diagram reveals the detail of the language/stack you are using
to build your software. In order to remain technology agnostic, we have used the
term package/module.

Using Architecture Decision Records
As developers, architects, and indeed humans, we have all been in the position where
we ask the question “what were they thinking??” If you have ever driven on the
M62 between Leeds and Manchester in the United Kingdom, you may have been
baffled by the construction of the motorway. As you climb the hill on the three-lane
highway, it starts to deviate away from the traffic contraflow, until eventually Scott
Hall Farm emerges surrounded by around 15 acres of farming land nestled between
the carriages. Local legend of what happened described the owner of the land as
stubborn and refusing to move or hand over his land, so the engineers simply built
around him.2 Fifty years later a documentary surfaced revealing that the real reason
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for this was a geological fault beneath the land, meaning the motorway had to be built
that way. When people guess why something was done in a particular way, expect
rumor, humor, and criticism to emerge.

In software architecture there will be many constraints that we have to build around,
so it is important to ensure our decisions are recorded and transparent. ADRs help
make decisions clear in software architecture.

One of the hardest things to track during the life of a project is the motivation behind
certain decisions. A new person coming on to a project may be perplexed, baffled,
delighted, or infuriated by some past decision.

—Michael Nygard, creator of the ADR concept

There are four key sections in an ADR: status, context, decision, and consequences.
An ADR is created in a proposed status and based on discussion will usually be either
accepted or rejected. It is also possible that the decision may be superseded later
by a new ADR. The context helps to set the scene and describe the problem or the
bounds in which the decision will be made. Although creating a blog post ahead of
the ADR and then linking from the ADR helps the community to follow your work,
the context is not intended to be a blog post or detailed description. The decision
clearly sets out what you plan to do and how you plan to do it. All decisions carry
consequences or trade-offs in architecture, and these can sometimes be incredibly
costly to get wrong.

When reviewing an ADR it is important to see if you agree with the decision in
the ADR or if there is an alternative approach. An alternative approach that has
not been considered may cause the ADR to be rejected. There is a lot of value in a
rejected ADR and most teams choose to keep ADRs immutable to capture the change
in perspective. ADRs work best when they are presented in a location where key
participants can view them, comment, and help move the ADR to accepted.

A question we often get asked is at what point should the team
create an ADR? It is useful to ensure that there has been discussion
ahead of the ADR and the record is a result of collective thinking
in the team. Publishing an ADR to the wider community allows the
opportunity for feedback beyond the immediate team.

Attendees Evolution ADR
In Figure I-4 we made the decision to take an evolutionary step in the conference
system architecture. This is a major change and would warrant an ADR. Table I-1 is
an example ADR that might have been proposed by the engineering team owning the
conference system.
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Table I-1. ADR001 separating attendees from the legacy conference system

Status Proposed
Context The conference owners have requested two new major features to the current conference

system that need to be implemented without disrupting the current system. The
conference system will need to be evolved to support a mobile application and an
integration with an external CFP system. Both the mobile application and the external CFP
system need to be able to access attendees to log in users to the third-party service.

Decision We will take an evolutionary step as documented in Figure I-4 to split out the Attendee
component into a standalone service. This will allow API-First development against the
Attendee service and allow the API to be invoked from the legacy conference service. This
will also support the ability to design for direct access to the Attendee service to provide
user information to the external CFP system.

Consequences The call to the Attendee service will not be out of process and may introduce a latency that
will need to be tested. The Attendee service could become a single point of failure in the
architecture and we may need to take steps to mitigate the potential impact of running
a single Attendee service. With the planned multiple consumer model for the Attendee
service, we will need to ensure good design, versioning, and testing to reduce accidental
breaking changes.

Some of the consequences in the ADR are fairly major and definitely require further
discussion. We are going to defer some of the consequences to later chapters.

Mastering API: ADR Guidelines
Within Mastering API Architecture we will be supplying ADR Guidelines to help col‐
lect important questions to ask when making decisions on the topic we are covering.
Making decisions about an API-based architecture can be really tough, and in a lot
of situations the answer is “it depends.” Rather than say it depends without context,
the ADR Guidelines will help describe what it depends on and help inform your
decisions. The ADR Guidelines can be used as a reference point to come back to or to
read ahead to if you’re facing a specific challenge. Table I-2 outlines the format for the
ADR Guidelines and what you should expect from them.

Table I-2. ADR Guideline: Format
Decision Describes a decision that you might need to make when considering an aspect of this book.

Discussion Points This section helps to identify the key discussions that you should be having when making a decision
about your API architecture.
In this section we will reveal some of our experiences that may have influenced the decision. We will
help you to identify the key information to inform your decision making process.

Recommendations We will make specific recommendations that you should consider when creating your ADR, explaining
the rationale behind why we are making a specific recommendation.
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Summary
In this introduction we have provided a foundation with both the case study and the
approach we will take to discussing API-driven architectures:

• Architecture is an endless journey and APIs can play a major part in helping it•
evolve.

• APIs are an abstraction of the implementation and can either be in process•
or out of process. Often architects find themselves in a position of evolving to
out-of-process APIs, the onward focus of this book.

• The conference case study is to describe and explain concepts. In this introduc‐•
tion you have seen a small evolutionary step to break out the Attendee service to
address the upcoming business requirements.

• You have seen the first three levels of C4 diagrams and their importance in•
sharing and communicating architecture.

• ADRs provide a valuable record for making decisions and have both present and•
historical value in the lifetime of a project.

• You have seen the structure for ADR Guidelines that will be used throughout the•
book to help facilitate decision making.

With the decision made to break the Attendee service out from the conference
system, we will now explore the options for designing and specifying the Attendee
API.
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PART I

Designing, Building, and Testing APIs

This section provides the foundational building blocks for API-driven architectures.

In Chapter 1 you will learn about REST and Remote Procedure Call (RPC)–based
APIs. We will explore specifications and schemas, recommended standards, strategies
for versioning, and how to choose the right API for your system.

In Chapter 2 you will learn about testing APIs and how different test styles are best
applied to API-driven architectures.





CHAPTER 1

Design, Build, and Specify APIs

You will be presented with many options when designing and building APIs. It is
incredibly fast to build a service with modern technologies and frameworks, but cre‐
ating a durable approach requires careful thought and consideration. In this chapter
we will explore REST and RPC to model the producer and consumer relationships in
the case study.

You will discover how standards can help to shortcut design decisions and navigate
away from potential compatibility issues. You will look at OpenAPI Specifications, the
practical uses for teams, and the importance of versioning.

RPC-based interactions are specified using a schema; to compare and contrast with a
REST approach, we will explore gRPC. With both REST and gRPC in mind, we will
look at the different factors to consider in how we model exchanges. We will look
at the possibility of providing both a REST and RPC API in the same service and
whether this is the right thing to do.

Case Study: Designing the Attendee API
In the Introduction we decided to migrate our legacy conference system and move
toward a more API-driven architecture. As a first step to making this change, we are
going to create a new Attendee service, which will expose a matching Attendee API.
We also provided a narrow definition of an API. In order to design effectively, we
need to consider more broadly the exchange between the producer and consumer,
and more importantly who the producer and consumer are. The producer is owned
by the attendee team. This team maintains two key relationships:
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• The attendee team owns the producer, and the legacy conference team owns the•
consumer. There is a close relationship between these two teams and any changes
in structure are easily coordinated. A strong cohesion between the producer/con‐
sumer services is possible to achieve.

• The attendee team owns the producer, and the external CFP system team owns•
the consumer. There is a relationship between the teams, but any changes need
to be coordinated to not break the integration. A loose coupling is required and
breaking changes would need to be carefully managed.

We will compare and contrast the approaches to designing and building the Attendee
API throughout this chapter.

Introduction to REST
REpresentation State Transfer (REST) is a set of architectural constraints, most com‐
monly applied using HTTP as the underlying transport protocol. Roy Fielding’s
dissertation “Architectural Styles and the Design of Network-based Software Archi‐
tectures” provides a complete definition of REST. From a practical perspective, to be
considered RESTful your API must ensure that:

• A producer-to-consumer interaction is modeled where the producer models•
resources the consumer can interact with.

• Requests from producer to consumer are stateless, meaning that the producer•
doesn’t cache details of a previous request. In order to build up a chain of
requests on a given resource, the consumer must send any required information
to the producer for processing.

• Requests are cachable, meaning the producer can provide hints to the consumer•
where this is appropriate. In HTTP this is often provided in information con‐
tained in the header.

• A uniform interface is conveyed to the consumer. You will explore the use of•
verbs, resources, and other patterns shortly.

• It is a layered system, abstracting away the complexity of systems sitting behind•
the REST interface. For example, the consumer should not know or care if they’re
interacting with a database or other services.

Introduction to REST and HTTP by Example
Let’s see an example of REST over HTTP. The following exchange is a GET request,
where GET represents the method or verb. A verb such as GET describes the action
to take on a particular resource; in this example, we consider the attendees resource.
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An Accept header is passed to define the type of content the consumer would like
to retrieve. REST defines the notion of a representation in the body and allows for
representation metadata to be defined in the headers.

In the examples in this chapter, we represent a request above the --- separator and a
response below:

GET http://mastering-api.com/attendees
Accept: application/json
---
200 OK
Content-Type: application/json
{
    "displayName": "Jim",
    "id": 1
}

The response includes the status code and message from the server, which enables
the consumer to interrogate the result of the operation on the server-side resource.
The status code of this request was a 200 OK, meaning the request was successfully
processed by the producer. In the response body a JSON representation containing
the conference attendees is returned. Many content types are valid for return from
a REST, however it is important to consider if the content type is parsable by the
consumer. For example, returning application/pdf is valid but would not represent
an exchange that could easily be used by another system. We will explore approaches
to modeling content types, primarily looking at JSON, later in this chapter.

REST is relatively straightforward to implement because the cli‐
ent and server relationship is stateless, meaning no client state
is persisted by the server. The client must pass the context back
to the server in subsequent requests; for example, a request for
http://mastering-api.com/attendees/1 would retrieve more informa‐
tion on a specific attendee.

The Richardson Maturity Model
Speaking at QCon in 2008, Leonard Richardson presented his experiences of review‐
ing many REST APIs. Richardson found levels of adoption that teams apply to
building APIs from a REST perspective. Martin Fowler also covered Richardson’s
maturity heuristics on his blog. Table 1-1 explores the different levels represented by
Richardson’s maturity heuristics and their application to RESTful APIs.
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Table 1-1. Richardson maturity heuristics
Level 0 -
HTTP/RPC

Establishes that the API is built using HTTP and has the notion of a single URI. Taking our preceding
example of /attendees and not applying a verb to specify intent, we would open up an endpoint for
exchange. Essentially this represents an RPC implementation over the REST protocol.

Level 1 -
Resources

Establishes the use of resources and starts to bring in the idea of modeling resources in the context of the
URI. In our example, if we added GET /attendees/1 returning a specific attendee, it would start to
look like a level 1 API. Martin Fowler draws an analogy to the classic object-oriented world of introducing
identity.

Level 2 - Verbs
(Methods)

Starts to introduce the correct modeling of multiple resource URIs accessed by different request methods
(also known as HTTP verbs) based on the effect of the resources on the server. An API at level 2 can make
guarantees around GET methods not impacting server state and presenting multiple operations on the
same resource URI. In our example adding DELETE /attendees/1, PUT /attendees/1 would
start to add the notion of a level 2–compliant API.

Level 3 -
Hypermedia
Controls

This is the epitome of REST design and involves navigable APIs by the use of HATEOAS (Hypertext As The
Engine Of Application State). In our example, when we call GET /attendees/1, the response would
contain the actions that are possible on the object returned from the server. This would include the option
to be able to update the attendee or delete the attendee and what the client is required to invoke in
order to do so. In practical terms level 3 is rarely used in modern RESTful HTTP services, and although the
navigation is a benefit in flexible UI style systems, it doesn’t suit interservice API calls. Using HATEOAS
would be a chatty experience and is often short-circuited by having a complete specification of possible
interactions up front while programming against the producer.

When designing API exchanges, the different levels of Richardson Maturity are
important to consider. Moving toward level 2 will enable you to project an under‐
standable resource model to the consumer, with appropriate actions available against
the model. In turn, this reduces coupling and hides the full detail of the backing
service. Later we will also see how this abstraction is applied to versioning.

If the consumer is the CFP team, modeling an exchange with low coupling and
projecting a RESTful model would be a good starting point. If the consumer is the
legacy conference team, we may still choose to use a RESTful API, but there is also
another option with RPC. In order to start to consider this type of traditionally east–
west modeling, we will explore RPC.

Introduction to Remote Procedure Call (RPC) APIs
A Remote Procedure Call (RPC) involves calling a method in one process but having
it execute code in another process. While REST can project a model of the domain
and provides an abstraction from the underlying technology to the consumer, RPC
involves exposing a method from one process and allows it to be called directly from
another.

gRPC is a modern open source high-performance RPC. gRPC is under stewardship
of the Linux Foundation and is the de facto standard for RPC across most platforms.
Figure 1-1 describes an RPC call in gRPC, which involves the legacy conference
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service invoking the remote method on the Attendee service. The gRPC Attendee
service starts and exposes a gRPC server on a specified port, allowing methods to be
invoked remotely. On the client side (the legacy conference service), a stub is used to
abstract the complexity of making the remote call into the library. gRPC requires a
schema to fully cover the interaction between producer and consumer.

Figure 1-1. Example C4 component diagram using gRPC

A key difference between REST and RPC is state. REST is by definition stateless—
with RPC state depends on the implementation. RPC-based integrations in certain
situations can also build up state as part of the exchange. This buildup of state has the
convenience of high performance at the potential cost of reliability and routing com‐
plexities. With RPC the model tends to convey the exact functionality at a method
level that is required from a secondary service. This optionality in state can lead to an
exchange that is potentially more coupled between producer and consumer. Coupling
is not always a bad thing, especially in east–west services where performance is a key
consideration.

A Brief Mention of GraphQL
Before we explore REST and RPC styles in detail, we would be remiss not to mention
GraphQL and where it fits into the API world. RPC offers access to a series of
individual functions provided by a producer but does not usually extend a model or
abstraction to the consumer. REST, on the other hand, extends a resource model for a
single API provided by the producer. It is possible to offer multiple APIs on the same
base URL using API gateways. We will explore this notion further in Chapter 3. If we
offer multiple APIs in this way, the consumer will need to query sequentially to build
up state on the client side. The consumer also needs to understand the structure of
all services involved in the query. This approach is wasteful if the consumer is only
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interested in a subset of fields on the response. Mobile devices are constrained by
smaller screens and network availability, so GraphQL is excellent in this scenario.

GraphQL introduces a technology layer over existing services, datastores, and APIs
that provides a query language to query across multiple sources. The query language
allows the client to ask for exactly the fields required, including fields that span across
multiple APIs. GraphQL uses the GraphQL schema language, to specify the types
in individual APIs and how APIs combine. One major advantage of introducing a
GraphQL schema in your system is the ability to provide a single version across
all APIs, removing the need for potentially complex version management on the
consumer side.

GraphQL excels when a consumer requires uniform API access over a wide range
of interconnected services. The schema provides the connection and extends the
domain model, allowing the customer to specify exactly what is required on the
consumer side. This works extremely well for modeling a user interface and also
reporting systems or data warehousing–style systems. In systems where vast amounts
of data are stored across different subsystems, GraphQL can provide an ideal solution
to abstracting away internal system complexity.

It is possible to place GraphQL over existing legacy systems and use this as a facade
to hide away the complexity, though providing GraphQL over a layer of well-designed
APIs often means the facade is simpler to implement and maintain. GraphQL can be
thought of as a complementary technology and should be considered when designing
and building APIs. GraphQL can also be thought of as a complete approach to
building up an entire API ecosystem.

GraphQL shines in certain scenarios and we would encourage you to take a look at
Learning GraphQL (O’Reilly) and GraphQL in Action (O’Reilly) for a deeper dive into
this topic.

REST API Standards and Structure
REST has some very basic rules, but for the most part the implementation and design
is left as an exercise for the developer. For example, what is the best way to convey
errors? How should pagination be implemented? How do you accidentally avoid
building an API where compatibility frequently breaks? At this point, it is useful to
have a more practical definition around APIs to provide uniformity and expectations
across different implementations. This is where standards or guidelines can help,
however there are a variety of sources to choose from.

For the purposes of discussing design, we will use the Microsoft REST API Guide‐
lines, which represent a series of internal guidelines that have been open sourced. The
guidelines use RFC-2119, which defines terminology for standards such as MUST,
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SHOULD, SHOULD NOT, MUST NOT, etc., allowing the developer to determine
whether requirements are optional or mandatory.

As REST API standards are evolving, an open list of API standards
are available on the book’s Github page. Please contribute via pull
request any open standards you think would be useful for other
readers to consider.

Let’s consider the design of the Attendee API using the Microsoft REST API Guide‐
lines and introduce an endpoint to create a new attendee. If you are familiar with
REST, the thought will immediately be to use POST:

POST http://mastering-api.com/attendees
{
    "displayName": "Jim",
    "givenName": "James",
    "surname": "Gough",
    "email": "jim@mastering-api.com"
}
---
201 CREATED
Location: http://mastering-api.com/attendees/1

The Location header reveals the location of the new resource created on the server,
and in this API we are modeling a unique ID for the user. It is possible to use the
email field as a unique ID, however the Microsoft REST API Guidelines recommend
in section 7.9 that personally identifiable information (PII) should not be part of the
URL.

The reason for removing sensitive data from the URL is that
paths or query parameters might be inadvertently cached in the
network—for example, in server logs or elsewhere.

Another aspect of APIs that can be difficult is naming. As we will discuss in “API
Versioning” on page 15, something as simple as changing a name can break compat‐
ibility. There is a short list of standard names that should be used in the Microsoft
REST API Guidelines, however teams should expand this to have a common domain
data dictionary to supplement the standards. In many organizations it is incredibly
helpful to proactively investigate the requirements around data design and in some
cases governance. Organizations that provide consistency across all APIs offered by
a company present a uniformity that enables consumers to understand and connect
responses. In some domains there may already be widely known terminology—use
them!
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Collections and Pagination
It seems reasonable to model the GET /attendees request as a response containing
a raw array. The following source snippet shows an example of what that might look
like as a response body:

GET http://mastering-api.com/attendees
---
200 OK
[
    {
        "displayName": "Jim",
        "givenName": "James",
        "surname": "Gough",
        "email": "jim@mastering-api.com",
        "id": 1,
    },
    ...
]

Let’s consider an alternative model to the GET /attendees request that nests the
array of attendees inside an object. It may seem strange that an array response is
returned in an object, however the reason for this is that it allows for us to model
bigger collections and pagination. Pagination involves returning a partial result, while
providing instructions for how the consumer can request the next set of results. This
is reaping the benefits of hindsight; adding pagination later and converting from an
array to an object in order to add a @nextLink (as recommended by the standards)
would break compatibility:

GET http://mastering-api.com/attendees
---
200 OK
{
    "value": [
        {
            "displayName": "Jim",
            "givenName": "James",
            "surname": "Gough",
            "email": "jim@mastering-api.com",
            "id": 1,
        }
    ],
    "@nextLink": "{opaqueUrl}"
}

Filtering Collections
Our conference is looking a little lonely with only one attendee, however when
collections grow in size we may need to add filtering in addition to pagination. The
filtering standard provides an expression language within REST to standardize how
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filter queries should behave, based upon the OData Standard. For example, we could
find all attendees with the displayName Jim using:

GET http://mastering-api.com/attendees?$filter=displayName eq 'Jim'

It is not necessary to complete all filtering and searching features from the start.
However, designing an API in line with the standards will allow the developer to
support an evolving API architecture without breaking compatibility for consumers.
Filtering and querying is a feature that GraphQL is really good at, especially if
querying and filtering across many of your services becomes relevant.

Error Handling
An important consideration when extending APIs to consumers is defining what
should happen in various error scenarios. Error standards are useful to define upfront
and share with producers to provide consistency. It is important that errors describe
to the consumer exactly what has gone wrong with the request, as this will avoid
increasing the support required for the API.

The guidelines state “For non-success conditions, developers SHOULD be able to write
one piece of code that handles errors consistently.” An accurate status code must be
provided to the consumer, because often consumers will build logic around the status
code provided in the response. We have seen many APIs that return errors in the
body along with a 2xx type of response, which is used to indicate success. 3xx status
codes for redirects are actively followed by some consuming library implementations,
enabling providers to relocate and access external sources. 4xx usually indicates a
client-side error; at this point the content of the message field is extremely useful to
the developer or end user. 5xx usually indicates a failure on the server side and some
client libraries will retry on these types of failures. It is important to consider and
document what happens in the service based on an unexpected failure—for example,
in a payment system does a 500 mean the payment has gone through or not?

Ensure that the error messages sent back to an external consumer
do not contain stack traces and other sensitive information. This
information can help a hacker aiming to compromise the system.
The error structure in the Microsoft guidelines has the concept
of an InnerError, which could be useful in which to place more
detailed stack traces/descriptions of issues. This would be incredi‐
bly helpful for debugging but must be stripped prior to an external
consumer.

We have just scratched the surface on building REST APIs, but clearly there are many
important decisions to be made when beginning to build an API. If we combine the
desire to present intuitive APIs that are consistent and allow for an evolving and
compatible API, it is worth adopting an API standard early.
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ADR Guideline: Choosing an API Standard
To make your decision on API standards, the guideline in Table 1-2 lists important
topics to consider. There are a range of guidelines to choose from, including the
Microsoft guidelines discussed in this section, and finding one that best matches the
styles of APIs being produced is a key decision.

Table 1-2. API Standards Guideline
Decision Which API standard should we adopt?

Discussion Points Does the organization already have other standards within the company? Can we extend those standards
to external consumers?
Are we using any third-party APIs that we will need to expose to a consumer (e.g., Identity Services) that
already have a standard?
What does the impact of not having a standard look like for our consumers?

Recommendations Pick an API standard that best matches the culture of the organization and formats of APIs you may
already have in the inventory.
Be prepared to evolve and add to a standard any domain/industry-specific amendments.
Start with something early to avoid having to break compatibility later for consistency.
Be critical of existing APIs. Are they in a format that consumers would understand or is more effort
required to offer the content?

Specifying REST APIs Using OpenAPI
As we’re beginning to see, the design of an API is fundamental to the success of an
API platform. The next consideration we’ll discuss is sharing the API with developers
consuming our APIs.

API marketplaces provide a public or private listing of APIs available to a consumer.
A developer can browse documentation and quickly try out an API in the browser to
explore the API behavior and functionality. Public and private API marketplaces have
placed REST APIs prominently into the consumer space. The success of REST APIs
has been driven by both the technical landscape and the low barrier to entry for both
the client and server.

As the number of APIs grew, it quickly became necessary to have a mechanism to
share the shape and structure of APIs with consumers. This is why the OpenAPI
Initiative was formed by API industry leaders to construct the OpenAPI Specification
(OAS). Swagger was the original reference implementation of the OpenAPI Specifica‐
tions, but most tooling has now converged on using OpenAPI.

The OpenAPI Specifications are JSON- or YAML-based representations of the API
that describe the structure, the domain objects exchanged, and any security require‐
ments of the API. In addition to the structure, they also convey metadata about the
API, including any legal or licensing requirements, and also carry documentation and
examples that are useful to developers consuming the API. OpenAPI Specifications
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are an important concept surrounding modern REST APIs, and many tools and
products have been built around its usage.

Practical Application of OpenAPI Specifications
Once an OAS is shared, the power of the specification starts to become apparent.
OpenAPI.Tools documents a full range of available open and closed source tools. In
this section we will explore some of the practical applications of tools based on their
interaction with the OpenAPI Specification.

In the situation where the CFP team is the consumer, sharing the OAS enables the
team to understand the structure of the API. Using some of the following practical
applications can help both improve the developer experience and ensure the health of
the exchange.

Code Generation
Perhaps one of the most useful features of an OAS is allowing the generation of
client-side code to consume the API. As discussed earlier, we can include the full
details of the server, security, and of course the API structure itself. With all this
information we can generate a series of model and service objects that represent and
invoke the API. The OpenAPI Generator project supports a wide range of languages
and toolchains. For example, in Java you can choose to use Spring or JAX-RS and
in TypeScript you can choose a combination of TypeScript with your favorite frame‐
work. It is also possible to generate the API implementation stubs from the OAS.

This raises an important question about what should come first—the specification
or the server-side code? In Chapter 2, we discuss “contract tracing,” which presents
a behavior-driven approach to testing and building APIs. The challenge with Open‐
API Specifications is that alone they only convey the shape of the API. OpenAPI
Specifications do not fully model the semantics (or expected behavior) of the API
under different conditions. If you are going to present an API to external users, it is
important that the range of behaviors is modeled and tested to help avoid having to
drastically change the API later.

APIs should be designed from the perspective of the consumer and consider the
requirement to abstract the underlying representation to reduce coupling. It is impor‐
tant to be able to freely refactor components behind the scenes without breaking API
compatibility, otherwise the API abstraction loses value.

OpenAPI Validation
OpenAPI Specifications are useful for validating the content of an exchange to ensure
the request and response match the expectations of the specification. At first it might
not seem apparent where this would be useful—if code is generated, surely the
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exchange will always be right? One practical application of OpenAPI validation is in
securing APIs and API infrastructure. In many organizations a zonal architecture is
common, with a notion of a demilitarized zone (DMZ) used to shield a network from
inbound traffic. A useful feature is to interrogate messages in the DMZ and terminate
the traffic if the specification does not match. We will cover security in more detail in
Chapter 6.

Atlassian, for example, open sourced a tool called the swagger-request-validator,
which is capable of validating JSON REST content. The project also has adapters
that integrate with various mocking and testing frameworks to help ensure that API
Specifications are conformed to as part of testing. The tool has an OpenApiInterac
tionValidator, which is used to create a ValidationReport on an exchange. The
following code demonstrates building a validator from the specification, including
any basePathOverrides—which may be necessary if deploying an API behind infra‐
structure that alters the path. The validation report is generated from analyzing the
request and response at the point where validation is executed:

//Using the location of the specification create an interaction validator
//The base path override is useful if the validator will be used
//behind a gateway/proxy
final OpenApiInteractionValidator validator = OpenApiInteractionValidator
        .createForSpecificationUrl(specUrl)
        .withBasePathOverride(basePathOverride)
        .build;

//Requests and Response objects can be converted or created using a builder
final ValidationReport report = validator.validate(request, response);

if (report.hasErrors()) {
    // Capture or process error information
}

Examples and Mocking
The OAS can provide example responses for the paths in the specification. Examples,
as we’ve discussed, are useful for documentation to help developers understand the
expected API behavior. Some products have started to use examples to allow the user
to query the API and return example responses from a mock service. This can be
really useful in features such as a developer portal, which allows developers to explore
documentation and invoke APIs. Another useful feature of mocks and examples is
the ability to share ideas between the producer and consumer ahead of committing to
build the service. Being able to “try out” the API is often more valuable than trying to
review if a specification would meet your requirements.
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Examples can potentially introduce an interesting problem, which is that this part of
the specification is essentially a string (in order to model XML/JSON, etc.). openapi-
examples-validator validates that an example matches the OAS for the corresponding
request/response component of the API.

Detecting Changes
OpenAPI Specifications can also be helpful in detecting changes in an API. This can
be incredibly useful as part of a DevOps pipeline. Detecting changes for backward
compatibility is very important, but first we need to understand versioning of APIs in
more detail.

API Versioning
We have explored the advantages of sharing an OAS with a consumer, including the
speed of integration. Consider the case where multiple consumers start to operate
against the API. What happens when there is a change to the API or one of the
consumers requests the addition of new features to the API?

Let’s take a step back and think about if this was a code library built into our
application at compile time. Any changes to the library would be packaged as a new
version and until the code is recompiled and tested against the new version, there
would be no impact to production applications. As APIs are running services, we
have a few upgrade options that are immediately available to us when changes are
requested:

Release a new version and deploy in a new location.
Older applications continue to operate against the older version of the APIs.
This is fine from a consumer perspective, as the consumer only upgrades to the
new location and API if they need the new features. However, the owner of the
API needs to maintain and manage multiple versions of the API, including any
patching and bug fixing that might be necessary.

Release a new version of the API that is backward compatible with the previous version
of the API.

This allows additive changes without impacting existing users of the API. There
are no changes required by the consumer, but we may need to consider down‐
time or availability of both old and new versions during the upgrade. If there is
a small bug fix that changes something as small as an incorrect field name, this
would break compatibility.
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1 We have been in this situation many times, usually first thing on a Monday!

Break compatibility with the previous API and all consumers must upgrade code to use
the new API.

This seems like an awful idea at first, as that would result in things breaking
unexpectedly in production.1 However, a situation may present itself where we
cannot avoid breaking compatibility with older versions. This type of change can
trigger a whole-system lockstep change that requires coordination of downtime.

The challenge is that all of these different upgrade options offer advantages but also
drawbacks either to the consumer or the producer. The reality is that we want to be
able to support a combination of all three options. In order to do this we need to
introduce rules around versioning and how versions are exposed to the consumer.

Semantic Versioning
Semantic versioning offers an approach that we can apply to REST APIs to give
us a combination of the preceding upgrade options. Semantic versioning defines a
numerical representation attributed to an API release. That number is based on the
change in behavior in comparison to the previous version, using the following rules:

• A major version introduces noncompatible changes with previous versions of the•
API. In an API platform, upgrading to a new major version is an active decision
by the consumer. There is likely going to be a migration guide and tracking as
consumers upgrade to the new API.

• A minor version introduces a backward compatible change with the previous•
version of the API. In an API service platform, it is acceptable for consumers to
receive minor versions without making an active change on the client side.

• A patch version does not change or introduce new functionality but is used for•
bug fixes on an existing Major.Minor version of functionality.

Formatting for semantic versioning can be represented as Major.Minor.Patch. For
example, 1.5.1 would represent major version 1, minor version 5, with patch upgrade
of 1. In Chapter 5 you will explore how semantic versioning connects with the
concept of API lifecycle and releases.

OpenAPI Specification and Versioning
Now that we have explored versioning we can look at examples of breaking changes
and nonbreaking changes using the Attendee API specification. There are several
tools to choose from to compare specifications, and in this example we will use
openapi-diff from OpenAPITools.
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We will start with a breaking change: we will change the name of the givenName field
to firstName. This is a breaking change because consumers will be expecting to parse
givenName, not firstName. We can run the diff tool from a docker container using
the following command:

$docker run --rm -t \
   -v $(pwd):/specs:ro \
   openapitools/openapi-diff:latest /specs/original.json /specs/first-name.json
==========================================================================
...
- GET    /attendees
  Return Type:
    - Changed 200 OK
      Media types:
        - Changed */*
          Schema: Broken compatibility
          Missing property: [n].givenName (string)
--------------------------------------------------------------------------
--                                Result                                --
--------------------------------------------------------------------------
                 API changes broke backward compatibility
--------------------------------------------------------------------------

We can try to add a new attribute to the /attendees return type to add an additional
field called age. Adding new fields does not break existing behavior and therefore
does not break compatibility:

$ docker run --rm -t \
 -v $(pwd):/specs:ro \
openapitools/openapi-diff:latest --info /specs/original.json /specs/age.json
==========================================================================
...
- GET    /attendees
  Return Type:
    - Changed 200 OK
      Media types:
        - Changed */*
          Schema: Backward compatible
--------------------------------------------------------------------------
--                                Result                                --
--------------------------------------------------------------------------
                   API changes are backward compatible
--------------------------------------------------------------------------

It is worth trying this out to see which changes would be compatible and which
would not. Introducing this type of tooling as part of the API pipeline is going to help
avoid unexpected noncompatible changes for consumers. OpenAPI Specifications are
an important part of an API program, and when combined with tooling, versioning,
and lifecycle, they are invaluable.
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2 Validation of OpenAPI Specifications at runtime helps enforce a greater strictness.

Tools are often OpenAPI version–specific, so it is important to
check whether the tool supports the specification you are working
with. In the preceding example we tried the diff tool with an earlier
version of a spec and no breaking changes were detected.

Implementing RPC with gRPC
East–west services such as Attendee tend to be higher traffic and can be implemented
as microservices used across the architecture. gRPC may be a more suitable tool than
REST for east–west services, owing to the smaller data transmission and speed within
the ecosystem. Any performance decisions should always be measured in order to be
informed.

Let’s explore using a Spring Boot Starter to rapidly create a gRPC server. The follow‐
ing .proto file models the same attendee object that we explored in our OpenAPI
Specification example. As with OpenAPI Specifications, generating code from a
schema is quick and supported in multiple languages.

The attendees .proto file defines an empty request and returns a repeated Attendee
response. In protocols used for binary representations, it is important to note that
the position and order of fields is critical, as they govern the layout of the message.
Adding a new service or new method is backward compatible as is adding a field to a
message, but care is required. Any new fields that are added must not be mandatory
fields, otherwise backward compatibility would break.

Removing a field or renaming a field will break compatibility, as will changing the
data type of a field. Changing the field number is also an issue as field numbers are
used to identify fields on the wire. The restrictions of encoding with gRPC mean
the definition must be very specific. REST and OpenAPI are quite forgiving as the
specification is only a guide.2 Extra fields and ordering do not matter in OpenAPI,
and therefore versioning and compatibility is even more important when it comes to
gRPC:

syntax = "proto3";
option java_multiple_files = true;
package com.masteringapi.attendees.grpc.server;

message AttendeesRequest {
}

message Attendee {
  int32 id = 1;
  string givenName = 2;
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  string surname = 3;
  string email = 4;

}

message AttendeeResponse {
  repeated Attendee attendees = 1;
}

service AttendeesService {
  rpc getAttendees(AttendeesRequest) returns (AttendeeResponse);
}

The following Java code demonstrates a simple structure for implementing the behav‐
ior on the generated gRPC server classes:

@GrpcService
public class AttendeesServiceImpl extends
    AttendeesServiceGrpc.AttendeesServiceImplBase {

    @Override
    public void getAttendees(AttendeesRequest request,
        StreamObserver<AttendeeResponse> responseObserver) {
          AttendeeResponse.Builder responseBuilder
              = AttendeeResponse.newBuilder();

          //populate response
          responseObserver.onNext(responseBuilder.build());
          responseObserver.onCompleted();
    }
}

You can find the Java service modeling this example on this book’s GitHub page.
gRPC cannot be queried directly from a browser without additional libraries, how‐
ever you can install gRPC UI to use the browser for testing. grpcurl also provides a
command-line tool:

$ grpcurl -plaintext localhost:9090 \
    com.masteringapi.attendees.grpc.server.AttendeesService/getAttendees
{
  "attendees": [
    {
      "id": 1,
      "givenName": "Jim",
      "surname": "Gough",
      "email": "gough@mail.com"
    }
  ]
}
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gRPC gives us another option for querying our service and defines a specification for
the consumer to generate code. gRPC has a more strict specification than OpenAPI
and requires methods/internals to be understood by the consumer.

Modeling Exchanges and Choosing an API Format
In the Introduction we discussed the concept of traffic patterns and the difference
between requests originating from outside the ecosystem and requests within the
ecosystem. Traffic patterns are an important factor in determining the appropriate
format of API for the problem at hand. When we have full control over the services
and exchanges within our microservices-based architecture, we can start to make
compromises that we would not be able to make with external consumers.

It is important to recognize that the performance characteristics of an east–west
service are likely to be more applicable than a north–south service. In a north–
south exchange, traffic originating from outside the producer’s environment will
generally involve the exchange using the internet. The internet introduces a high
degree of latency, and an API architecture should always consider the compounding
effects of each service. In a microservices-based architecture it is likely that one
north–south request will involve multiple east–west exchanges. High east–west traffic
exchange needs to be efficient to avoid cascading slow-downs propagating back to the
consumer.

High-Traffic Services
In our example, Attendees is a central service. In a microservices-based architecture,
components will keep track of an attendeeId. APIs offered to consumers will poten‐
tially retrieve data stored in the Attendee service, and at scale it will be a high-traffic
component. If the exchange frequency is high between services, the cost of network
transfer due to payload size and limitations of one protocol versus another will be
more profound as usage increases. The cost can present itself in either monetary costs
of each transfer or the total time taken for the message to reach the destination.

Large Exchange Payloads
Large payload sizes may also become a challenge in API exchanges and are suscepti‐
ble to decreasing transfer performance across the wire. JSON over REST is human
readable and will often be more verbose than a fixed or binary representation fuelling
an increase in payload sizes.
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A common misconception is that “human readability” is quoted
as a primary reason to use JSON in data transfers. The number
of times a developer will need to read a message versus the per‐
formance consideration is not a strong case with modern tracing
tools. It is also rare that large JSON files will be read from begin‐
ning to end. Better logging and error handling can mitigate the
human-readable argument.

Another factor in large payload exchanges is the time it takes components to parse
the message content into language-level domain objects. Performance time of parsing
data formats varies vastly depending on the language a service is implemented in.
Many traditional server-side languages can struggle with JSON compared to a binary
representation, for example. It is worth exploring the impact of parsing and include
that consideration when choosing an exchange format.

HTTP/2 Performance Benefits
Using HTTP/2-based services can help to improve performance of exchanges by sup‐
porting binary compression and framing. The binary framing layer is transparent to
the developer, but behind the scenes will split and compress the message into smaller
chunks. The advantage of binary framing is that it allows for a full request and
response multiplexing over a single connection. Consider processing a list in another
service and the requirement is to retrieve 20 different attendees; if we retrieved these
as individual HTTP/1 requests it would require the overhead of creating 20 new TCP
connections. Multiplexing allows us to perform 20 individual requests over a single
HTTP/2 connection.

gRPC uses HTTP/2 by default and reduces the size of exchange by using a binary
protocol. If bandwidth is a concern or cost, then gRPC will provide an advantage, in
particular as content payloads increase significantly in size. gRPC may be beneficial
compared to REST if payload bandwidth is a cumulative concern or the service
exchanges large volumes of data. If large volumes of data exchanges are frequent, it is
also worth considering some of the asynchronous capabilities of gRPC.

HTTP/3 is on the way and it will change everything. HTTP/3 uses
QUIC, a transport protocol built on UDP. You can find out more in
HTTP/3 explained.

Vintage Formats
Not all services in an architecture will be based on a modern design. In Chapter 8
we will look at how to isolate and evolve vintage components, as older components
will be an active consideration for evolving architectures. It is important that those
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involved with an API architecture understand the overall performance impact of
introducing vintage components.

Guideline: Modeling Exchanges
When the consumer is the legacy conference system team, the exchange is typically
an east–west relationship. When the consumer is the CFP team, the exchange is
typically a north–south relationship. The difference in coupling and performance
requirements will require the teams to consider how the exchange is modeled. You
will see some aspects for consideration in the guideline shown in Table 1-3.

Table 1-3. Modeling exchanges guideline
Decision What format should we use to model the API for our service?

Discussion Points Is the exchange a north–south or east–west exchange? Are we in control of the consumer code?
Is there a strong business domain across multiple services or do we want to allow consumers to construct
their own queries?
What versioning considerations do we need to have?
What is the deployment/change frequency of the underlying data model?
Is this a high-traffic service where bandwidth or performance concerns have been raised?

Recommendations If the API is consumed by external users, REST is a low barrier to entry and provides a strong domain
model. External users also usually means that a service with loose coupling and low dependency is
desirable.
If the API is interacting between two services under close control of the producer or the service is proven
to be high traffic, consider gRPC.

Multiple Specifications
In this chapter we have explored a variety of API formats to consider in an API
architecture, and perhaps the final question is “Can we provide all formats?” The
answer is yes, we can support an API that has a RESTful presentation, a gRPC service,
and connections into a GraphQL schema. However, it is not going to be easy and may
not be the right thing to do. In this final section, we will explore some of the options
available for a multiformat API and the challenges it can present.

Does the Golden Specification Exist?
The .proto file for attendees and the OpenAPI Specification do not look too dissimi‐
lar; they contain the same fields and both have data types. Is it possible to generate
a .proto file from an OAS using the openapi2proto tool? Running openapi2proto
--spec spec-v2.json will output the .proto file with fields ordered alphabetically by
default. This is fine until we add a new field to the OAS that is backward compatible
and suddenly the ID of all fields changes, breaking backward compatibility.

22 | Chapter 1: Design, Build, and Specify APIs

https://oreil.ly/f11XL


The following sample .proto file shows that adding a_new_field would be alphabet‐
ically added to the beginning, changing the binary format and breaking existing
services:

message Attendee {
    string a_new_field = 1;
    string email = 2;
    string givenName = 3;
    int32 id = 4;
    string surname = 5;
}

Other tools are available to solve the specification conversion prob‐
lem, however it is worth noting that some tools only support
OpenAPI Specification version 2. The time taken to move between
versions 2 and 3 in some of the tools built around OpenAPI has led
to many products needing to support both versions of the OAS.

An alternative option is grpc-gateway, which generates a reverse proxy providing a
REST facade in front of the gRPC service. The reverse proxy is generated at build
time against the .proto file and will produce a best-effort mapping to REST, similar to
openapi2proto. You can also supply extensions within the .proto file to map the RPC
methods to a nice representation in the OAS:

import "google/api/annotations.proto";
//...
service AttendeesService {
  rpc getAttendees(AttendeesRequest) returns (AttendeeResponse) {

option(google.api.http) = {
get: "/attendees"

};
}

Using grpc-gateway gives us another option for presenting both a REST and gRPC
service. However, grpc-gateway involves several commands and a setup that would
only be familiar to developers who work with the Go language or build environment.

Challenges of Combined Specifications
It’s important to take a step back here and consider what we are trying to do.
When converting from OpenAPI we are effectively trying to convert our RESTful
representation into a gRPC series of calls. We are trying to convert an extended
hypermedia domain model into a lower-level function-to-function call. This is a
potential conflation of the difference between RPC and APIs and is likely going to
result in wrestling with compatibility.
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With converting gRPC to OpenAPI we have a similar issue; the objective is trying to
take gRPC and make it look like a REST API. This is likely going to create a difficult
series of issues when evolving the service.

Once specifications are combined or generated from one another, versioning
becomes a challenge. It is important to be mindful of how both the gRPC and
OpenAPI Specifications maintain their individual compatibility requirements. An
active decision should be made as to whether coupling the REST domain to an RPC
domain makes sense and adds overall value.

Rather than generate RPC for east–west from north–south, what makes more sense
is to carefully design the microservices-based architecture (RPC) communication
independently from the REST representation, allowing both APIs to evolve freely.
This is the choice we have made for the conference case study and would be recorded
as an ADR in the project.

Summary
In this chapter we have covered how to design, build, and specify APIs and the
different circumstances under which you may choose REST or gRPC. It is important
to remember that it is not REST versus gRPC, but rather given the situations, which is
the most appropriate choice for modeling the exchange. The key takeaways are:

• The barrier to building REST- and RPC-based APIs is low in most technologies.•
Carefully considering the design and structure is an important architectural
decision.

• When choosing between REST and RPC models, consider the Richardson•
Maturity Model and the degree of coupling between the producer and consumer.

• REST is a fairly loose standard. When building APIs, conforming to an agreed•
API standard ensures your APIs are consistent and have the expected behavior
for your consumers. API standards can also help to short-circuit potential design
decisions that could lead to an incompatible API.

• OpenAPI Specifications are a useful way of sharing API structure and automat‐•
ing many coding-related activities. You should actively select OpenAPI features
and choose what tooling or generation features will be applied to projects.

• Versioning is an important topic that adds complexity for the producer but•
is necessary to ease API usage for the consumer. Not planning for versioning
in APIs exposed to consumers is dangerous. Versioning should be an active
decision in the product feature set and a mechanism to convey versioning to
consumers should be part of the discussion.
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• gRPC performs incredibly well in high-bandwidth exchanges and is an ideal•
option for east–west exchanges. Tooling for gRPC is powerful and provides
another option when modeling exchanges.

• Modeling multiple specifications starts to become quite tricky, especially when•
generating from one type of specification to another. Versioning complicates
matters further but is an important factor to avoid breaking changes. Teams
should think carefully before combining RPC representations with RESTful API
representations, as there are fundamental differences in terms of usage and
control over the consumer code.

The challenge for an API architecture is to meet the requirements from a consumer
business perspective, to create a great developer experience around APIs, and to
avoid unexpected compatibility issues. In Chapter 2 you will explore testing, which is
essential in ensuring services meet these objectives.
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1 Matthew’s friend owns a mouthguard company and was on the receiving end of hearing about the arduous
process for testing the integrity of the product. No one wants a mouthguard where the only testing takes place
during the match!

2 SLOs and SLIs will be discussed in more detail in Chapter 5.

CHAPTER 2

Testing APIs

Chapter 1 covered the different types of APIs and the value that they provide to
your architecture. This chapter closes out the Designing, Building, and Testing APIs
section of this book by reviewing approaches to testing APIs. The new Attendee API
that was extracted within the Introduction should obviously be tested and validated.
We believe that testing is core to building APIs. It helps provide a high level of confi‐
dence to you that your service is working as expected, which will help you deliver
a quality product to consumers of your API. It is only by testing your API under
varying conditions that you will gain the confidence that it is operating correctly.

When building APIs, as with creating any product, the only way to verify that the
product works as expected is to test it. In the case of a mouthguard, this can mean
stretching, hitting, pushing, and pulling the product, or even running simulations.1

As discussed in “Specifying REST APIs Using OpenAPI” on page 12, an API should
not return anything that differs from what is documented. It is also frustrating when
an API introduces breaking changes or causes network timeouts due to the large
duration of time to retrieve a result. These types of issues drive customers away and
are entirely preventable by creating quality tests around the API service. Any API
built should be ready to fulfill a variety of requirements, including sending useful
feedback to users who provide a bad input, being secure, and returning results within
a specified service-level objective (SLO) based on our service-level indicators (SLIs)
that are agreed.2
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In this chapter we will introduce the different types of testing that you can apply to
your API to help avoid these issues from occurring.

We will highlight the positives and the negatives of each type of testing, so you can
decide where best to invest your time. We are going to focus on testing APIs and
where we believe that you will gain the most value; we will not be covering generic
testing of services. The chapter will contain additional resources for those readers
seeking to gain a significantly more in-depth and specialist knowledge about testing.

Conference System Scenario for This Chapter
In “Attendees Evolution ADR” on page xxxv, we explained the reasons to separate the
Attendee API from the rest of the conference system. The separation of the Attendee
API introduces new interactions. The Attendee API will be used by the external CFP
system and legacy conference system, as is shown in Figure 2-1. You will spend this
chapter covering the testing needed for the Attendee service and how testing can
help verify the interactions between the legacy conference system and the Attendee
API. As a collective we have seen enough APIs that become inconsistent or produce
accidental breaking changes as new releases are made, and this is primarily due to a
lack of testing. For the new Attendee API it is important to ensure that it avoids these
pitfalls by providing confidence that the correct results will always be returned, and
the only way this can happen is by investing in the right levels of testing.

Figure 2-1. Scenario for the chapter

Testing can be applied at different levels of an API, starting with the individual
building blocks that make up the service, going all the way to verifying that it works
as part of the entire ecosystem. Before showing you some tools and frameworks that
are available for API testing, it is important to understand the strategies that can be
used.

Testing Strategies
Testing is important; it ensures that you are building a working application. However,
you don’t want something that just works, you want something that also has the
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right behavior. Realistically, though, you have limited time and resources to write
tests, so you will want to ensure that you are not wasting cycles writing tests that
provide little to no value. After all, the value for customers is when you are running
in production. Therefore, you need to be smart about deciding upon the coverage
and proportions of the types of tests you should be using. Avoid creating irrelevant
tests, duplicating tests, and any tests that are going to take more time and resources
than the value they provide (i.e., flaky tests). Not all the testing that is introduced
needs to be implemented to be able to release an API, as it may not be feasible due to
time constraints and business demands.

To guide you to getting the right balance and the right tests for your case, we will
introduce the test quadrant and test pyramid. These will give you focus on identifying
the testing you should be implementing.

Test Quadrant
The test quadrant was first introduced by Brian Marick in his blog series on agile
testing. This became popularized in the book Agile Testing by Lisa Crispin and Janet
Gregory (Addison-Wesley). The technology side of building an API cares that it has
been built correctly, that its pieces (e.g., functions or endpoints) respond as expected,
and that it is resilient and continues to behave under abnormal circumstances. The
business cares that the right service is being developed (i.e., in our case, that the
Attendee API provides the right functionality). To clarify, the term “the business”
means someone who has a clear understanding of the product and the features
and the functionality that should be developed; they need not have a technical
understanding.

The test quadrant brings together tests that help technology and business stakehold‐
ers alike—each perspective will have different opinions on priorities. The popular
image of the test quadrant is shown in Figure 2-2.
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Figure 2-2. Agile Test Quadrants from Agile Testing (Addison-Wesley) by Lisa Crispin
and Janet Gregory

The test quadrant does not depict any order. The quadrants are labeled for conve‐
nience and this is a common source of confusion that Lisa describes in one of her
blog posts. The four quadrants can be generally described as follows:

Q1
Unit and component tests for technology. These should verify that the service
that has been created works, and this verification should be performed using
automated testing.

Q2
Tests with the business. These ensure what is being built is serving a purpose.
This is verified with automated testing and can also include manual testing.

Q3
Testing for the business. This is about ensuring that functional requirements
are met and also includes exploratory testing. When Figure 2-2 was originally
created, this type of testing was manual; now it is possible to perform automated
testing in this area as well.
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3 To learn more on agile testing, check out the books Agile Testing (O’Reilly), More Agile Testing (O’Reilly), or
the video series Agile Testing Essentials.

Q4
Ensuring that what exists works from a technical standpoint. From Q1 you know
that what has been built works; however, when the product is being used, is
it performing as expected? Examples of performing correctly from a technical
standpoint could include security enforcement, SLA integrity, and autoscaling.

The left side of quadrant (Q1, Q2) is all about supporting the product. It helps
guide the product and prevent defects. The right side (Q3, Q4) is about critiquing
the product and finding defects. The top of the quadrant (Q2, Q3) is the external
quality of your product, making sure that it meets your users’ expectations. This
is what the business finds important. The bottom of the quadrant (Q1, Q4) is the
technology-facing tests to maintain the internal quality of your application.3

The test quadrant does not say where you should start testing; it helps guide you on
the tests that you might want. This is something that you must decide and should be
based on the factors important to you. For example, a ticketing system must handle
large traffic spikes, so it may be best to start with ensuring that your ticket system is
resilient (e.g., performance testing). This would be part of Q4.

Test Pyramid
In addition to the test quadrants, the test pyramid (also known as the test automation
pyramid) can be used as part of your strategy for test automation. The test pyramid
was first introduced in the book Succeeding with Agile by Mike Cohn. This pyramid
illustrates a notion of how much time should be spent on a given test area, its
corresponding difficulty to maintain, and the value it provides in terms of additional
confidence. The test pyramid at its core has remained unchanged. It has unit tests
as its foundation, service tests in the middle block, and UI tests at the peak of the
pyramid. Figure 2-3 shows the areas of the test pyramid you will explore.
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4 The typical example of a unit in object-oriented (OO) languages is a class.
5 Test doubles include stubs, which look like real implementations of an external entity, except they return

hardcoded responses. Mocks look like real implementations of preprogrammed objects, but instead are used
to verify behavior.

6 Kent Beck’s book Test Driven Development: By Example (Addison-Wesley) is a fantastic resource for learning
more about TDD.

Figure 2-3. The test pyramid, showing the proportion of tests desired

The test automation pyramid shows the trade-offs that exist in terms of confidence,
isolation, and scope. By testing small parts of the codebase, you have better isolation
and faster tests; however, this does not give confidence that the whole application is
working. By testing the entire application in its ecosystem, the opposite is true. The
tests give you more confidence that the application is working, but the scope of the
test will be large as many pieces will be interacting together. This also makes it more
difficult to maintain and slow. The following defines each of the core elements of the
test pyramid:

• Unit tests are at the bottom of the pyramid; they form the foundation of your•
testing. They test small, isolated units of your code to ensure that your defined
unit is running as expected.4 If your test is going to escape the boundaries of your
unit, you can use test doubles. Test doubles are objects that look like real versions
of an external entity; however, they are under your control.5 Because unit tests
form the foundation of your pyramid, there should be more unit tests than any
other type of test; we recommend using TDD as a practice.6 TDD is about writing
tests before you write the logic. Unit tests fit into Q1 of the test quadrant and are
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used to provide quality to the internals of the application. Unit testing will not
be covered further as we will be focusing on tests that verify your API from an
external consumer standpoint as opposed to the internals of an API.

• Service tests make up the middle tier of the pyramid. They will provide you with•
more confidence that your API is working correctly than unit tests, though they
are more expensive. The expense comes from the tests having a larger scope and
less isolation, which incurs a higher maintenance and development cost. Service
tests include some of the following cases: the verification that multiple units are
working together, that behavior is as expected, and that the application itself is
resilient. Therefore, service tests fit into Q1, Q2, and Q4 of the test quadrant.

• UI tests sit at the top of the test pyramid. In the old days a majority of applica‐•
tions being built for the web were LAMP stacks, and the only way to test your
application from the front to the backend was through the Web UI. There is a
UI with APIs: it is just not graphical, so these tests will now be referred to as
end-to-end tests. They cover the same ground of a request flowing from a start to
an end point but do not necessarily imply or assume that traffic originates from a
Web UI. End-to-end tests are the most complex. They have the largest scope and
are slow to run; however, they will verify entire modules are working together so
they provide lots of confidence. End-to-end tests will generally sit in Q2, Q3, Q4
of the quadrant. Tooling for testing has improved and become more advanced,
and it is now making more and more of Q3 available for automation.

One type of test is not better than another—the test pyramid is a guide to the
proportions of each type of testing you should aim to implement. It can be tempting
to ignore the test pyramid and concentrate on end-to-end testing as this gives a high
degree of confidence. However, this is a fallacy and instead gives a false sense of
security that these higher-level tests are of higher quality/value than unit tests. The
fallacy gives rise to the ice cream cone representation of testing, which is the opposite
of a test pyramid. For a robust argument on this topic, please read Steve Smith’s blog
post “End-to-End Testing considered harmful”. You may also consider implementing
other proportions of tests, though it is not recommended. Martin Fowler wrote an
updated piece on testing shapes and covered why he feels that testing that is guided
by any shape other than the test pyramid is incorrect.
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7 To clarify, it is also possible that a service can be both a producer and consumer.

ADR Guideline for Testing Strategies
To help you decide on the testing strategy that you should use, the ADR Guideline in
Table 2-1 should help you make an informed decision.

Table 2-1. ADR Guideline: Testing strategies
Decision When building your API, which testing strategy should be made part of the development process?

Discussion Points Do all parties that have a stake in the API have the time and the availability to regularly discuss how the
API should be working? If you are unable to effectively communicate with the stakeholders, you could
end up stalling your product waiting for a decision to be made.
Are the skills and experience available to effectively use these testing strategies? Not everyone has used
these practices before, so you need to weigh if you have the time resources to train everyone on them.
Are there other practices within your workplace that are recommended and should be used? Sometimes
there can be internal strategies to building software that work for an organization or are required due to
the nature of the business.

Recommendations We recommend using test quadrants and the test pyramid.
The test quadrant is very valuable to ensure that your customers are getting the right product. The test
quadrant coupled with the test pyramid will help you build a great API.
We do recognize that using the test quadrant in its truest form by having someone readily available from
the business to help guide your testing is not always possible. However, at a minimum, use the test
pyramid as this concentrates the automated side of the test quadrant. This at the very least will ensure
that you find bugs early in your development cycle.
Whatever the case, you will always need someone to help guide the product direction.

Contract Testing
Contract testing has two entities: a consumer and a producer. A consumer requests
data from an API (e.g., web client, terminal shell), and a producer (also known as a
provider) responds to the API requests, i.e., it is producing data, such as a RESTful
web service. A contract is a definition of an interaction between the consumer and
producer. It is a statement to say if a consumer makes a request that matches the
contract request definition, then the producer will return a response that matches
the contract response definition. In the case of the Attendee API, it is a producer
and the consumer is the legacy conference system. The legacy conference system is
a consumer as it is calling the Attendee API.7 So why use contracts? What do they
offer you?

Why Contract Testing Is Often Preferable
As you learned in “Specifying REST APIs Using OpenAPI” on page 12, APIs should
have a specification, and it is important that your API responses conform to the API
specification that you have laid out. Having a written definition of these interactions
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8 A stub server is a service that can be run locally and will return canned responses.

that must be adhered to by the producer ensures that consumers can keep using your
API and makes it possible to generate tests. The contract defines what a request and
response should look like and these can be used to verify that the producer (the API)
is fulfilling the contract. If you break a contract test, then it means that the producer
is not fulfilling the contract anymore, which means that consumers will be broken.

As the contract has the response definition, it is also possible to generate a stub
server.8 This stub server can be used by consumers to verify that they can call the
producer correctly and parse the response from the producer. Contract testing can
be performed locally—it is not required to launch additional services, which makes
it part of your service tests. Contracts will evolve and the consumers and producers
pick up these changes as they are made available, which ensures that they are able to
continually integrate with the latest contract.

There is already a lot of value here about why you would want to use contracts.
Additionally, contract testing has a well-developed ecosystem. There are established
methodologies that guide what the contract should be, as well as frameworks and test
integrations to generate contracts and provide effective ways to distribute them. We
believe that contracts are the best way to define interactions between the service you
implement and a consumer. Other tests are important and should be implemented as
well, but these offer the most bang for the buck.

It is important to note that contract testing is not the same as
saying that an API conforms to a schema. A system is either com‐
patible with a schema (like OpenAPI Spec) or it is not; a contract is
about a defined interaction between parties and provides examples.
Matt Fellows has an excellent piece on this titled “Schema-based
contract testing with JSON schemas and Open API (Part 1)”.

How a Contract Is Implemented
As mentioned, a contract is a shared definition of how a producer and consumer
interact. The following example shows a contract for a GET request to the endpoint /
conference/{conference-id}/attendees. It states that the expected response has a
property called value that contains an array of values about the attendees. In this
sample definition of a contract, you can see that it is defining an interaction, which is
used to generate the tests and stub server:

Contract.make {
  request {
    description('Get a list of all the attendees at a conference')
    method GET()
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    url '/conference/1234/attendees'
    headers {
      contentType('application/json')
    }
  }
  response {
    status OK()
    headers {
      contentType('application/json')
    }
    body(
        value: [
            $(
                id: 123456,
                givenName: 'James',
                familyName: 'Gough'
            ),
            $(
                id: 123457,
                givenName: 'Matthew',
                familyName: 'Auburn'
            )
        ]
    )
  }
}

In Figure 2-4 you see how the generated tests are used by the consumer and producer.

Figure 2-4. Generated stub server and tests from a contract
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It is tempting to use contracts for scenario tests. For example:

Step 1: add an attendee to a conference.
Step 2: get the list of attendees of the conference and check
that the attendee was added correctly.

Frameworks do support this but also discourage it. Contracts are
about defining interaction; if you wish to test this type of behavior,
then use component tests.

A key benefit of using contracts is that once the producer agrees to implement a
contract, this decouples the dependency of building the consumer and producer.

We have used generated stub servers to run demos for stakehold‐
ers. This was useful as the producer was still implementing the
logic; however, they had agreed to the contracts.

The consumer has a stub server to develop against and the producer has tests to
ensure that they are building the right interaction. The contract test process saves
time, as when both the consumer and producer are deployed, they should integrate
seamlessly.

The generated tests need to be executed against your running API
(producer). When your API launches, you should use test doubles
for external dependencies. You do not want to be testing integra‐
tions with other services as part of your generated contract tests
against the consumer.

To understand how contracts are agreed upon, let’s look at the two main contract
methodologies.

Producer contracts
Producer contract testing is when a producer defines its own contracts. This practice
is commonly utilized when your API is being used outside your immediate organi‐
zation (i.e., external third parties). When you’re developing an API for an external
audience, the API needs to maintain its integrity, because the interface cannot make
breaking changes without a migration plan, as you learned in “API Versioning” on
page 15. Though interactions will be updated and improved, no individual consumer
is likely to be able to ask for changes that affect the whole API and receive a quick
change, because these changes need to be carefully orchestrated.

Contract Testing | 37



A real-world example of such an API is the Microsoft Graph API. Microsoft has
thousands of consumers of this API from companies all over the world. Having
companies or individuals adjust contracts for the Graph API with what they believe
the contract should look like isn’t feasible. That is not to say that changes should
not be suggested to Microsoft, as they definitely are. However, even if a change is
agreed to it will not be made quickly as the change will need to be verified and tested
carefully.

If the Attendee API is going to be made available for public consumption, then the
same concerns occur. What is important for the Attendee API is to use contracts to
ensure that the interactions do not diverge and that the data returned is consistent.

Another reason to use producer contracts is that it is easier to get started. It is a good
way to introduce contracts to your APIs. Having contracts is far more beneficial than
not having them. However, when consumers and producers are both in the same
organization, we suggest that you use the consumer-driven contracts methodology.

Consumer-driven contracts
Consumer-driven contracts (CDCs), by definition, are implemented by a consumer
driving the functionality that they wish to see in an interaction. Consumers submit
contracts, or changes to a contract, to the producer for new or additional API func‐
tionality. When the new/updated contract is submitted to the producer, a discussion
about the change will begin, which will result in accepting or rejecting this change.

CDC is very much an interactive and social process. The owners of the applications
that are consumers and producers should be within reach (e.g., in the same organi‐
zation as one another). When a consumer would like a new interaction (e.g., API
call) or have an interaction updated (e.g., a new property added), then they submit a
request for that feature.

Case study: Applying CDC
In our case, this may mean that a pull request is submitted from the legacy confer‐
ence system to the new Attendee API service. The request for the new interaction
is then reviewed and a discussion takes place about this new functionality. This
discussion is to ensure that this is something that the Attendee service should and will
fulfill. For example, if a contract is suggested for a PUT request, a discussion can take
place, as it may be preferable to have this as a PATCH request.

This is where a good part of the value of contracts comes from: this discussion for
both parties about what the problem is, and using a contract to assert that this is
what the two parties accept and agree to. Once the contract is agreed to, the producer
(Attendee service) accepts the contract as part of the project and can start fulfilling it.
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9 At the time of writing, there are a few projects that are available, though none are actively maintained, so it is
difficult to recommend any.

10 Pact does a good job of comparing itself to other contract frameworks.

Contracts methodology overview
These methodologies should hopefully give an overview of how to use contracts as
part of the development process. This should not be taken as gospel, as variations do
exist on the exact steps. For example, one process may request that the consumer—
when writing the contract—also creates a basic implementation of producer code to
fulfill the contract. In another example, the consumer should TDD the functionality
they require and then create the contract before submitting the pull request. The
exact process that is put in place may vary by team. Once you understand the core
concepts and patterns of CDC, the exact process that is used is just an implementa‐
tion detail.

If you are starting out on a journey to add contracts, you should note that there is
a cost—the setup time to incorporate contracts into a project and also the cost of
writing the contracts. It is worth looking at tooling that can create contracts for you
based on an OpenAPI Specification.9

Contract testing frameworks
It is likely that when it comes to contract testing frameworks for HTTP, you will
want to look at Pact. Pact has evolved into the default contract testing framework
due to the ecosystem that has been built around it and the sheer number of
languages it supports. Other contract testing frameworks are available, and they
can be opinionated. Pact is opinionated; it enforces that you should perform CDC
and is specifically designed for that. A test is written by a consumer and that test
generates a contract, which takes the form of an intermediate representation of the
interaction. This language-agnostic intermediate representation is why Pact has such
wide language usage. Other frameworks have differing opinions; for example, Spring
Cloud Contracts does not have a strong opinion on CDC or producer contracts, and
either can be achieved. This is possible as with Spring Cloud Contracts you write
the contracts by hand as opposed to having them generated. Though Spring Cloud
Contracts is language agnostic by using a containerized version of the product, to get
the most out of it you need to be using the Spring and JVM ecosystem.10

There are options for contract testing for other protocols; it is not exclusively for
HTTP communications.
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API contracts storage and publishing
Having seen how contracts work and methodologies of incorporating them into the
development process, the next consideration becomes where contracts are stored and
how they should be published.

There are a few options for storing and publishing contracts and these again depend
on the setup that is available to you and your organization.

Contracts can be stored alongside the producer code in version control (e.g., Git).
They can also be published alongside your build into an artifact repository such as
Artifactory.

Ultimately the contracts need to be obtainable by the producer and the consumer.
The storage point also needs to allow for the submission of new contracts. The
producer should have control over which contracts are accepted in the project and
can ensure that undesired changes aren’t made or additional contracts are added. The
downside to this approach is that in a large organization it can be difficult to find all
the API services that use contracts.

Another option is to store all the contracts in a centralized location to enable visibility
into other API interactions that are available. This central location could be a Git
repository, but the downside to this approach is that unless organized and set up
correctly, it is possible and likely that contracts get pushed into a module that the
producer has no intention of fulfilling.

Yet another option for storing contracts is to use a broker. The Pact contract frame‐
work has a broker product that can be used as a central location to host contracts.
A broker can show all contracts that have been validated by the producer as the
producer will publish those contracts that have been fulfilled. A broker can also see
who is using a contract to produce a network diagram, integrate with CI/CD pipe‐
lines, and provide even more valuable information. This is the most comprehensive
solution available and if you use a framework that is compatible with the Pact Broker,
then it is recommended.

ADR Guideline: Contract Testing
To understand if applying contract testing is valid for your case and weighing the
pros and cons of using contracts, the ADR Guideline in Table 2-2 should help guide
you to a decision.
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Table 2-2. ADR Guideline: Contract testing
Decision When building an API should you use contract testing and, if so, should you use consumer-driven

contracts or producer contracts?

Discussion Points Determine whether you are ready to include contract testing as part of your API testing.

• Do you want to add an extra layer of testing to your API that developers will be required to learn•
about?

If contracts have not been used before, then it requires time to decide how you will use them.

• Should contracts be centralized or in a project?•
• Do additional tools and training need to be provided to help people with contracts?•

If deciding to use contracts, then which methodology should be used—CDC or producer contracts?

• Do you know who will use this API?•
• Will this API be used just within your organization?•
• Does the API have consumers that are willing to engage with you to help drive your functionality?•

Recommendations We recommend using contract testing when building an API. Even if there is a developer learning curve
and you are deciding how you are going to set up your contracts for the first time, we believe it is worth
the effort. Defined interactions that are tested save so much time when integrating services together.
If you are exposing your API to a large external audience, it is important to use producer contracts. Again,
having defined interactions that help ensure that your API does not break backward compatibility is
crucial.
If you’re building an internal API, the ideal is to work toward CDC, even if you have to start with producer
contracts and evolve over to CDC.
If contract testing is not feasible, then for a producer you need alternatives to ensure that your API is
conforming your agreed interactions and provide a way that consumers can test. This means that you
have to be very careful with your tests that the responses and requests match with what is expected,
which can be tricky and time-consuming.

API Component Testing
Component testing can be used to validate that multiple units work together and
should be used to validate behavior—they are service tests in the test pyramid in
Figure 2-3. An example of a component test is sending a request to your API and
verifying the response. At a high level it will require that your application can read
the request, perform authentication and authorization, deserialize a payload, perform
the business logic, serialize the payload, and respond. That is a lot of units being
tested, and it would be difficult to point to exactly where a bug could be. Where this
example differs from a contract test is that you should be checking that the service
had the correct behavior; for example, if this was creating a new attendee, you want to
verify that the service made a call to the (mocked) database. You are not just checking
the shape of the response like contract tests do. As component tests verify multiple
units together, they are (normally) slower running than unit tests. Component tests
should not call out to external dependencies. Like contract testing, you are not using
these tests to verify external integration points. The type of tests that you want to
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trigger in this scope varies based on the business case; however, for APIs you would
be looking to validate cases such as:

• Is the correct status code returned when a request is made?•
• Does the response contain the correct data?•
• Is an incoming payload rejected if a null or empty parameter is passed in?•
• When I send a request where the accepted content type is XML, will the data•

return the expected format?
• If a request is made by a user who does not have the correct entitlements, what•

will the response be?
• What will happen if an empty dataset is returned? Is this a 404 or is it an empty•

array?
• When creating a resource, does the location header point to the new asset•

created?

From this selection of tests, you can see how these bleed into two areas of the test
quadrant. This includes Q1, where you are confirming that the API being built works
(i.e., it is producing results), and Q2, where you test to verify that the responses of the
Attendee API are correct.

Contract Testing Versus Component Testing
If contract testing is not available, you should use API component tests to verify
that your API conforms to your agreed interactions, i.e., your API specification.
Using API component tests to verify that your API conforms to an interaction is not
ideal—for a start, it is much more likely to be error-prone and is tedious to write. You
should make contracts your golden source of agreed interactions, as the generated
tests ensure that the shape of your API is accurate.

Case Study: Component Test to Verify Behavior
Let’s look at an example of a case for our Attendee API for the endpoint /confer
ence/{conference-id}/attendees. This endpoint returns a list of the attendees at a
conference event. For this component test, a mock is used to represent our external
database dependency, and as seen in Figure 2-5, in this case that is the DAO.

Some things to test this endpoint for are:

• Requests that are successful have response of 200 (OK)•
• Users without the right level of access will return a status of 403 (Forbidden)•
• When a conference has no attendees, an empty array will be returned•
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11 These testing libraries usually have a Domain Specific Language (DSL) and make it easy to analyze responses
from the API. RestAssured is one such REST testing framework in Java, and the httptest package comes out
of the box with Golang. Depending on the language or framework that you use, there should be something
available; otherwise, creating a small wrapper around a standard client can make things considerably easier to
integrate responses when writing tests.

Figure 2-5. API Component test with mocked DAO

A library or testing framework that wraps a request client can be really useful. Here
REST-Assured is used to call the Attendee API endpoint and to verify these test
cases:11

@Test
void response_for_attendees_should_be_200() {
    given()
        .header("Authorization", VALID_CREDENTIAL)
    .when()
        .get("/conference/conf-1/attendees")
    .then()
        .statusCode(HttpStatus.OK.value());
}
@Test
void response_for_attendees_should_be_403() {
    given()
        .header("Authorization", INVALID_CREDENTIAL)
    .when()
        .get("/conference/conf-1/attendees")
    .then()
        .statusCode(HttpStatus.FORBIDDEN.value());
...
}

Running this type of test gives us confidence that our API is behaving correctly.
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12 Duplicate value for id and misspelled familyNane (sic).

API Integration Testing
Integration tests in our definition are tests across boundaries between the module
being developed and any external dependencies. Integration tests are a type of service
test and can be seen in the test pyramid image in Figure 2-3.

When performing integration testing, you want to confirm that the communication
across the boundary is correct; i.e., your service can correctly communicate with
another service that is external to it.

The types of things you want to verify are the following:

• Ensuring that an interaction is being made correctly; e.g., for a RESTful service,•
this may be specifying the correct URL or that the payload body is correct.

• Can the unit that is interacting with an external service handle the responses that•
are being returned?

In our case the legacy conference system needs to verify that it can make a request to
the new Attendee API and can interpret the response.

Using Stub Servers: Why and How
If you are using contract tests, the generated stub servers can be used to verify that
the consumer can communicate with the producer. The legacy conference system
has a generated stub server and can use this to test against. This will keep testing
local, and the stub server will be accurate. This is the preferred option for testing an
external boundary.

However, a generated stub server from a contract is not always available and other
options are required, as in the case of testing with an external API, such as the
Microsoft Graph API, or within your organization when contracts are not used. The
simplest one is to hand roll a stub server that mimics the requests and responses
of the service you interact with. This is certainly a viable option, as in your chosen
language and framework it is usually very easy for a developer to create a stub server
with canned responses that integrate with tests.

The key considerations when hand rolling a stub server is to make sure that the stub
is accurate. It can be very easy to make mistakes, such as inaccurately portraying the
URL or making mistakes in the response property names and values. Can you see the
errors in this handtyped response?12
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{
    "values": [
        {
            "id":  123456,
            "givenName": "James",
            "familyName": "Gough"
        },
        {
            "id":  123457,
            "givenName": "Matthew",
            "familyNane": "Auburn"
        },
        {
            "id":  123456,
            "givenName": "Daniel",
            "familyName": "Bryant"
        }
    ]
}

This should still not put you off as this is a good solution. One of the authors had
great success with this approach after a requirement for a project meant he had to
hand roll a stub server for a login service.

A way to avoid these inaccuracies and to ensure that requests to URLs are accurately
captured along with the responses is to use a recorder. It is possible to use a tool that
will record the requests and responses to an endpoint and generate files that can be
used for stubbing. Figure 2-6 shows how this works.

Figure 2-6. How a consumer of the Attendee API would use a recorder to capture a
request/response for test data
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13 Wiremock is a tool that can be used as a standalone service, making it language agnostic, although since it
is written in Java there are some specific Java integrations that you can take advantage of. There are many
other tools available that have a similar capability in other languages such as camouflage, which is written in
TypeScript.

These generated files are mappings that can then be used for tests to accurately
portray requests and responses, and as they are not hand rolled they are guaranteed
to be accurate at the point of generation. To use these generated files, a stub server
is launched that is capable of reading in the mappings files. When a request is made
to the stub server, it checks to see if the request matches any of the expected requests
in the mappings file. If it matches, then the mapped response will be returned.13

Recording calls to APIs will produce more accurate stubs than that of hand rolling a
stub. If you do use recordings, then you need to make sure they stay updated and in
sync; also, if you make recordings against production, you need to watch that no PII
is saved into the mapping files.

ADR Guideline: Integration Testing
Integration testing is important, so to help you understand what types of integration
testing you need, see the ADR Guideline in Table 2-3.

Table 2-3. ADR Guideline: Integration testing
Decision Should integration testing be added to API testing?

Discussion Points If your API is integrating with any other service, what level of integration test should you use?

• Do you feel confident that you can just mock responses and do not need to perform integration tests?•
• For creating a stub server to test against, are you able to accurately craft the request and responses or•

should they be recorded?
• Will you be able to keep stub servers up-to-date and recognize if an interaction is incorrect?•

If your stubs are incorrect or become out of date, this means it is possible to have tests that pass against
your stub server, but when you deploy to production, your service fails to interact with the other API as it
has changed.

Recommendations We do recommend using the generated stub servers from contract tests. However, if this is not
available, then having integration testing using recordings of interactions is the next best option. Having
integration tests that can be run locally gives confidence that an integration will work, especially when
refactoring an integration; it will help to ensure that any changes have not broken anything.

Integration testing is a really useful tool; however, definitions of these interactions
have issues. The main issue is that they are point-in-time snapshots. These bespoke
setups do not get updated with changes.

We have been using stub servers for the integrations we have looked at; however, it is
possible to use a real instance of the external service to verify an integration.
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Containerizing Test Components: Testcontainers
It is common to build applications as containerized images, which means that many
applications that your service will integrate with are also available as containerized
solutions. These images can be run on your local machine as part of your testing. Not
only does using local containers allow for testing communication with the external
services, but also you can run the same image that is run in production.

Testcontainers is a library that integrates with your testing framework to orchestrate
containers. Testcontainers will start and stop and generally organize the lifecycle of
containers you use with your tests.

Case Study: Applying Testcontainers to Verify Integrations
Let’s take a look at two use cases where this is helpful for the Attendee API. The first
case is that the Attendee API service will support a gRPC interface as well as the
RESTful interface. The gRPC interface is to be developed after the RESTful interface,
but there are eager developers who want to start testing against a gRPC interface.
The decision is made to provide a stub server for the gRPC interface, which will
be a stub that provides a few canned responses. To achieve this goal, a bare-bones
application is made that fulfills this objective. This gRPC stub is then packaged up,
containerized, and published. This stub can be now used by the developers for testing
across a boundary; i.e., they can make real calls to this stub server in their tests, and
this containerized stub server can run locally on their machine.

The second use case is that the Attendee API service has a connection to an external
database, which is an integration to test. The options for testing integration bound‐
aries for a database would be to mock out the database, use an in-memory database
(e.g., H2), or run a local version of the database using Testcontainers. Using a real
instance of the database in your test provides a lot of value because with mocks
you can mock the wrong return value or make an incorrect assumption. With an
in-memory DB you are assuming that the implementation matches the real DB.
Using a real instance of the dependency and it being the same version that you run
in production means that you get reliable testing across a boundary, which ensures
that the integration will work when going to production. In Figure 2-7 you see the
structure of the test to confirm a successful integration across a boundary with a
database.
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Figure 2-7. Testcontainers DAO test

Testcontainers is a powerful tool and should be considered when testing boundaries
between any external services. Other common external services that benefit from
using Testcontainers include Kafka, Redis, and NGINX. Adding this type of solution
will increase the time it takes for your tests to run; however, integration tests are
usually fewer and the additional confidence that is provided more often than not is a
worthwhile trade-off for additional time.

Using Testcontainers raises a couple of questions. First, is this type of testing consid‐
ered integration testing or is it end-to-end testing as a real instance of another service
is being tested against? Second, why not just use this instead of contracts?

Using Testcontainers does not make the tests end-to-end if it stays within the integra‐
tion boundary. We suggest that you use Testcontainers to test integrations; ensuring
that the container has the right behavior is not your job (assuming that the owner of
the image is outside your domain). For example, if I issue a statement to publish a
message to a Kafka broker, I should not then subscribe to the topic to check that the
item published was correct. I should trust that Kafka is doing its job and subscribers
would be getting the message. If you want to verify this behavior, make it part of
your end-to-end tests. That is why the boundary of what you are testing matters,
so the case of the DAO to the database is not end-to-end testing, because only the
interactions across the boundary are validated.

Testcontainers and integrating with a real service is a real boon and can add a lot of
value to your testing, though they are not a replacement for contracts just because
you can use a real version of a service. Working with a real instance is nice; however,
contracts provide so much more than just a stub server—they provide all the testing,
integration, and collaboration.
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End-to-End Testing
The essence of end-to-end testing is to test services and their dependencies together
to verify they work as expected. It is important to validate that when a request is
made, and it reaches the front door (i.e., the request reaches your infrastructure), the
request flows all the way through and the consumer gets the correct response. This
validation gives confidence that all these systems work together as expected. For our
case this is testing the legacy conference system, the new Attendee service, and the
database all together.

Automating End-to-End Validation
This section concentrates on automated end-to-end tests. Automation is intended to
save you time, so we will present automated testing that we believe gives you the
best value. You will always need to verify that your systems work together—however,
you can do this manually in a testing environment before releasing software into
production.

If you are building an external-facing API and you have multiple
third parties that are consuming it, don’t try to copy the third-party
UI and replicate how it works. Doing so will mean that you spend
huge amounts of time trying to replicate something out of your
domain.

For end-to-end testing it is ideal is to have real versions of your services running and
interacting together; however, sometimes this is not always feasible. Therefore, it is
okay to stub out some entities of a system that are outside your organization’s domain
and are provided by an external party. A hypothetical case would be if the Attendee
service required the use of AWS S3. Relying on an external entity opens up concerns
such as network issues or even the external provider being unavailable. Also, if your
tests are not going to use an entity, there is no need to make it available for your
test. For an end-to-end test of the Attendee service, the database and the Attendee
service need to be launched, but this does not require the legacy conference system,
as it is superfluous. This is why end-to-end tests sometimes require boundaries. The
boundary for this end-to-end test is shown in Figure 2-8.
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Figure 2-8. End-to-end test scope

Managing and coordinating multiple systems together is not easy to automate and
end-to-end tests can be brittle. However, running end-to-end tests locally is becom‐
ing easier. As you have just seen in “Containerizing Test Components: Testcontainers”
on page 47, containerization allows you to spin up multiple systems locally. Even
though this is getting easier, you should still follow the test pyramid guidelines—
end-to-end tests are at the top of the test pyramid for a reason.

When writing your end-to-end tests, you should use realistic payloads. We have
seen cases where tests use small and concise payloads, then when investigating why
APIs are breaking it is found that the consumers are regularly sending very large
payloads—larger than the buffers support. This is why your end-to-end testing needs
to be representative of the way that a consumer uses your API.

Types of End-to-End Tests
The end-to-end tests that you write should be driven off the requirements that are
most important, as you saw in “Test Quadrant” on page 29.

Within Q3 of the test quadrant, you see scenario testing. Scenario tests are a common
form of end-to-end testing. They are for testing out typical user journeys and provide
confidence that your service is performing correctly. A scenario test can be based
around a single action or multiple actions. It is important that you are only testing
core user journeys and not testing edge cases or exception testing. To help you write
your tests, you can use Behavior Driven Development (BDD). This is a nice way
to write your user stories as part of your business-facing tests. An example for the
conference system would be that when an attendee is registered for a conference talk,
the attendee count should have increased when the conference talk information is
retrieved.
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The nice thing with scenario tests and validating these core user journeys is that you
are not going to be concerned if a component is slower than in production. What is
being interrogated is the correct behavior and expected results. However, you need
to be more careful when running performance end-to-end tests. Performance testing,
Q4 in the testing quadrant, should be deployed to a like-for-like environment of your
production environment. If the two differ, you will not get results indicative of how
your services are working. This does mean that you are going to need to deploy
your services to this representative hardware, and depending on your resources and
environment, that can be tricky. You should take this into consideration if it is going
to make your tests flaky or is going to cost more development time than the return
of confidence. However, this should not put you off because we have seen this type of
end-to-end testing be successful.

The performance tests that you write as part of your end-to-end testing should be
focused on ensuring that you are still serving requests within your targeted SLOs.
You want these performance tests to show you have not introduced any sudden lag
to your services (e.g., accidentally adding in some blocking code). If volume is impor‐
tant, you want to verify that your service is able to handle the loads you expect. Some
great tools are available for performance testing, such as Gatling, JMeter, Locust, and
K6. Even if none of these appeal to you, others are available and in many different
languages that you should be familiar with. The performance figures that you want
should be driven from your business requirements.

As part of your end-to-end testing, you should also ensure that your security is
in place (i.e., TLS is turned on and the appropriate authentication mechanisms are
in place). Security should not be turned off for these tests as it does not make it
representative of a user journey, or it misrepresents metrics.

End-to-end testing is more complex than any other type of testing as it takes
resources to create and maintain. Though it can be a time saver over doing end-
to-end manual testing, it provides confidence in the application and evidence that
services were working from a technical standpoint to meet service agreements.

ADR Guideline: End-to-End Testing
Knowing what to include, and whether end-to-end testing is worthwhile for your
case, are important considerations. The ADR Guidelines in Table 2-4 should help you
make a decision.
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Table 2-4. ADR Guideline: End-to-End Testing
Decision As part of your testing setup, should you use automated end-to-end tests?

Discussion Points Determine how complex your setup is to enable end-to-end testing. Do you have a good idea of
end-to-end tests that you require and will provide value? Are there any specific requirements or more
advanced end-to-end tests that you should add?

Recommendations We recommend that you do perform at a minimum end-to-end testing on core user journeys. This is
going to give feedback as early as possible in your development cycle that a user could be impacted with
the changes that have been made. Ideally you can run these end-to-end tests locally; however, if not,
then it should be part of your build pipeline.
End-to-end testing is valuable but must be balanced against the time investment you need to get it
running. If it is not possible to do automated end-to-end testing, then you need to have a run book of
manual tests that you can use. This run book should be used against a testing environment before a
production release. This type of manual testing will considerably slow down your production releases and
ability to deliver value to customers.

Summary
In this chapter you have learned about the core types of testing for APIs, including
what should be tested and where time should be dedicated. The key takeaways are:

• Stick to the fundamentals of testing and make unit testing a core of your API.•
• Contract testing can help you develop a consistent API and test with other APIs.•
• Perform service tests on your component and isolate the integrations to validate•

incoming and outgoing traffic.
• Use end-to-end tests to replicate core user journeys to help validate that your•

APIs all integrate correctly.
• Use the ADR Guidelines as a way to work out if you should add different tests to•

your API.

While we’ve given you lots of information, ideas, and techniques for testing your API,
this is by no means an exhaustive list of tools available. We encourage you to do some
research on testing frameworks and libraries that you may want to use, to ensure you
are making an informed decision.

However, no matter how much testing is done upfront, nothing is as good as seeing
how an application actually runs in production. You will learn more about testing in
production in Chapter 5. The next chapter will focus on exposing and managing APIs
in a production setting using API gateways.
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PART II

API Traffic Management

This section explores how API traffic is managed. This includes both traffic originat‐
ing externally from end users that is entering (ingressing) into your system and traffic
originating internally from services that is traveling across (service-to-service) your
system.

In Chapter 3, where we recommend you begin your journey, you will explore using
API gateway technology to manage ingress, or north–south traffic.

In Chapter 4, you will learn about managing east–west traffic using the service mesh
pattern.





CHAPTER 3

API Gateways: Ingress Traffic Management

Now that you have a good understanding of defining and testing an API, we can
turn our attention to platforms and tooling that are responsible for delivering APIs to
consumers in production. An API gateway is a critical part of any modern technology
stack, sitting at the network “edge” of systems and acting as a management tool that
mediates between a consumer and a collection of backend services.

In this chapter you will learn about the “why,” “what,” and “where” of API gateways
and explore the history of the API gateway and other edge technologies. You will also
explore the taxonomy of API gateways and learn how these fit into the bigger picture
of system architecture and deployment models, all while avoiding common pitfalls.

Building on all of these topics, you will conclude the chapter by learning how to select
an appropriate API gateway based on your requirements, constraints, and use cases.

Is an API Gateway the Only Solution?
We have frequently been asked, “Is an API gateway the only solution to getting user
traffic to backend systems?” The short answer is no. But there is a bit more nuance
here.

Many software systems need to route consumer API requests or ingress traffic from
an external origin to an internal backend application. With web-based software
systems, often the consumer’s API requests originate from an end user interacting
with a backend system via a web browser or mobile app. A consumer’s requests may
also originate from an external system (often third-party) making requests to an
API via an application deployed elsewhere on the internet. In addition to providing
a mechanism of routing traffic from a URL to a backend system, a solution that
provides ingress will typically also be required to provide reliability, observability, and
security.
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As you will learn throughout this chapter, an API gateway isn’t the only technology
that can provide these requirements. For example, you can use a simple proxy or
load balancer implementation. However, we believe it is the most commonly used
solution, particularly within an enterprise context, and as the number of consumers
and providers increases, it is often the most scalable, maintainable, and secure option.

As shown in Table 3-1, you will want to match your current requirements to the
capabilities of each solution. Don’t worry if you don’t understand all of these require‐
ments, as you will learn more about them throughout the chapter.

Table 3-1. Comparing reverse proxies, load balancers, and API gateways

Feature Reverse proxy Load balancer API gateway
Single Backend * * *
TlS/SSL * * *
Multiple Backends * *
Service Discovery * *
API Composition *
Authorization *
Retry Logic *
Rate Limiting *
Logging and Tracing *
Circuit Breaking *

Guideline: Proxy, Load Balancer, or API Gateway
Table 3-2 provides a series of ADR Guidelines to help you decide the best ingress
solution for your organization’s system or current project.

Table 3-2. ADR Guideline: Proxy, load balancer, or API gateway
Decision Should you use a proxy, load balancer, or API gateways for routing ingress traffic?

Discussion Points Do you want simple routing, for example, from a single endpoint to a single backend service?
Do you have cross-functional requirements that will require more advanced features, such as
authentication, authorization, or rate limiting?
Do you require API management functionality, such as API keys/tokens or monetization/chargeback?
Do you already have a solution in place, or is there an organization-wide mandate that all traffic must be
routed through certain components at the edge of your network?

Recommendations Always use the simplest solution for your requirements, with an eye to the immediate future and known
requirements.
If you have advanced cross-functional requirements, an API gateway is typically the best choice.
If your organization is an enterprise, an API gateway that supports API Management (APIM) features is
recommended.
Always perform due diligence within your organization for existing mandates, solutions, and
components.
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Case Study: Exposing the Attendee Service to Consumers
As the conference system has seen considerable uptake since its launch, the owners
would like to enable conference attendees to be able to view their details via a
new mobile application. This will require that the Attendee service API be exposed
externally in order for the mobile app to query this data. As the Attendee service
contains personally identifiable information (PII), this will mean that the API must
be secure in addition to being reliable and observable. You could simply expose
the API using a proxy or load balancer and implement any additional requirements
using language- or framework-specific features. However, you must ask yourself if
this solution would scale, would it be reusable (potentially supporting additional
APIs using different languages and frameworks), and have these challenges already
been solved within existing technologies or products? In this case study, we know
that additional APIs are planned to be exposed in the future, and that additional
languages and frameworks may be used in their implementation. It therefore makes
sense to implement an API gateway-based solution.

As this chapter develops, you will add an API gateway to the existing conference
system case study to expose the Attendee API in a manner that meets all of these
requirements listed. Figure 3-1 shows what the conference system architecture will
look like with the addition of an API gateway.

Figure 3-1. Using an API gateway to route to the Attendee service running independ‐
ently from the monolith
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What Is an API Gateway?
In a nutshell, an API gateway is a management tool that sits at the edge of a system
between a consumer and a collection of backend services and acts as a single point
of entry for a defined group of APIs. The consumer can be an end-user application
or device, such as a single page web application or a mobile app, or another internal
system, or third-party application or system.

An API gateway is implemented with two high-level fundamental components: a
control plane and data plane. These components can typically be packaged together
or deployed separately. The control plane is where operators interact with the gateway
and define routes, policies, and required telemetry. The data plane is the location
where all of the work specified in the control plane occurs, the network packets are
routed, the policies enforced, and telemetry emitted.

What Functionality Does an API Gateway Provide?
At a network level an API gateway typically acts as a reverse proxy to accept all of
the API requests from a consumer, calls and aggregates the various application-level
backend services (and potentially external services) required to fulfill them, and
returns the appropriate result.

What Is a Proxy, Forward Proxy, and Reverse Proxy?
A proxy server, sometimes referred to as a forward proxy, is an intermediary server
that forwards requests for content from multiple clients to different servers across
the internet. A forward proxy is used to protect clients. For instance, a business may
have a proxy that routes and filters employee traffic to the public internet. A reverse
proxy server, on the other hand, is a type of proxy server that typically sits behind
the firewall in a private network and routes client requests to the appropriate backend
server. A reverse proxy is designed to protect servers.

An API gateway provides cross-cutting requirements such as user authentication,
request rate limiting, and timeouts/retries, and can provide metrics, logs, and trace
data in order to support the implementation of observability within the system.
Many API gateways provide additional features that enable developers to manage the
lifecycle of an API, assist with the onboarding and management of developers using
the APIs (such as providing a developer portal and related account administration
and access control), and provide enterprise governance.
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Where Is an API Gateway Deployed?
An API gateway is typically deployed at the edge of a system, but the definition
of “system” in this case can be quite flexible. For startups and many small-medium
businesses (SMBs), an API gateway will often be deployed at the edge of the data
center or the cloud. In these situations there may only be a single API gateway
(deployed and running via multiple instances for high availability) that acts as the
front door for the entire backend estate, and the API gateway will provide all of the
edge functionality discussed in this chapter via this single component.

Figure 3-2 shows how clients interact with an API gateway and backend systems over
the internet.

Figure 3-2. A typical startup/SMB API gateway deployment

For large organizations and enterprises, an API gateway will typically be deployed in
multiple locations, often as part of the initial edge stack at the perimeter of a data
center, and additional gateways may be deployed as part of each product, line of
business, or organizational department. In this context these gateways would more
typically be separate implementations and may offer differing functionality depend‐
ing on geographical location (e.g., required governance) or infrastructure capabilities
(e.g., running on low-powered edge compute resources).

Figure 3-3 shows how an API gateway often sits between the public internet and the
demilitarized zone (DMZ) of a private network.
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Figure 3-3. A typical large/enterprise API gateway deployment

As you will learn later in this chapter, the definition and exact functionality offered
within an API gateway isn’t always consistent across implementations, and so the
preceding diagrams should be thought of as more conceptual rather than an exact
implementation.

How Does an API Gateway Integrate with Other
Technologies at the Edge?
There are typically many components deployed at the edge of an API-based system.
This is where the consumers and users first interact with the backend, and hence
many cross-cutting concerns are best addressed here. Therefore, a modern edge
technology stack or “edge stack” provides a range of functionality that meets essential
cross-functional requirements for API-based applications. In some edge stacks each
piece of functionality is provided by a separately deployed and operated component,
and in others the functionality and/or components are combined. You will learn
more about the individual requirements in the next section of the chapter, but for the
moment Figure 3-4 should highlight the key layers of a modern edge stack.

These layers should not be treated as a monolithic component. They are typically
deployed separately and may be owned and operated by individual teams or third-
party service providers. Several API gateways provide all of the functionality within
an edge stack. Others simply focus on the API gateway functionality and API man‐
agement. It is also common within cloud environments that the cloud vendor will
provide a load balancer that can be integrated with an API gateway.

60 | Chapter 3: API Gateways: Ingress Traffic Management



Figure 3-4. A modern edge stack

Now that you have a good idea about the “what” and “where” of an API gateway, let’s
now look at why an organization would use an API gateway.

Why Use an API Gateway?
A big part of the modern software architect’s role is asking the hard questions
about design and implementation. This is no different when dealing with APIs
and traffic management and related technologies. You need to balance both short-
term implementation and long-term maintainability. There are many API-related
cross-cutting concerns that you might have, including maintainability, extensibility,
security, observability, product lifecycle management, and monetization. An API
gateway can help with all of these!
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This section of the chapter will provide you with an overview of the key problems
that an API gateway can address, such as:

• Reducing coupling by using an adapter/facade between frontends and backends•
• Simplifying consumption by aggregating/translating backend services•
• Protecting APIs from overuse and abuse with threat detection and mitigation•
• Understanding how APIs are being consumed (observability)•
• Managing APIs as products with API lifecycle management•
• Monetizing APIs by using account management, billing, and pay•

Reduce Coupling: Adapter/Facade Between Frontends and Backends
Three fundamental concepts that every software architect should learn about early
in their career are coupling, cohesion, and information hiding. You are taught that
systems that are designed to exhibit loose coupling and high cohesion will be easier
to understand, maintain, and modify. Information hiding is the principle of segrega‐
tion of the design decisions in a software system that are most likely to change.
Loose coupling allows different implementations to be swapped in easily, and can
be especially useful when testing systems (e.g., it is easier to mock and stub loosely
coupled dependencies). High cohesion promotes understandability—that is, all code
in a module or system supports a central purpose—and reliability and reusability.
Information hiding protects other parts of the system from extensive modification if
the design decision is changed. In our experience, APIs are often the locations in a
system in which the architectural theory meets the reality; an API is quite literally
and figuratively an interface that other engineers integrate with.

An API gateway can act as a single entry point and a facade or an adapter, and hence
promote loose coupling and cohesion. A facade defines a new simpler interface for a
system, whereas an adapter reuses an old interface with the goals of supporting inter‐
operability between two existing interfaces. Clients integrate with the API exposed
at the gateway, which, providing the agreed upon contract is maintained, allows
components at the backend to change location, architecture, and implementation
(language, framework, etc.) with minimal impact. Figure 3-5 demonstrates how an
API gateway can act as a single entry point for client requests to the backend APIs
and services.
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Figure 3-5. An API gateway providing a facade between frontends and backends

Simplify Consumption: Aggregating/Translating Backend Services
Building on the discussion of coupling in the previous section, it is often the case
that the API you want to expose to the frontend systems is different than the current
interface provided by a backend or composition of backend systems. For example,
you may want to aggregate the APIs of several backend services that are owned by
multiple owners into a single consumer-facing API in order to simplify the mental
model for frontend engineers, streamline data management, or hide the backend
architecture. GraphQL is often used for exactly these reasons. Of course, there are
trade-offs with implementing this type of functionality here, and it can be all too easy
to highly couple logic within an API gateway with backend service business logic.

Orchestrating Concurrent API Calls
A popular simplification approach implemented in API gateways is orchestrating
concurrent backend API calls. This is where the gateway orchestrates and coordinates
the concurrent calling of multiple independent backend APIs. Typically you want to
call multiple independent and noncoupled APIs in parallel rather than sequentially
in order to save time when gathering results for the consumer. Providing this in the
gateway removes the need to independently implement this functionality in each of
the consumers. Once again the trade-off is that business logic can become spread
across the API gateway and backend systems. There are also operation coupling
issues to consider. An implementation change in an API gateway that alters the
ordering of API calls can impact the expected results, particularly if the backend calls
are not idempotent.
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It is also a common requirement within an enterprise context that protocol transla‐
tion is required. For example, you may have several “heritage” systems that provide
only SOAP-based APIs, but you only want to expose REST-like APIs to consumers.
An API gateway can provide this aggregation and translation functionality, although
care should be taken with this usage. There is a design, implementation, and testing
cost for making sure the translation has the correct fidelity. There is also a compu‐
tational resource cost for implementing the translation, which can be costly when
dealing within a large number of requests. Figure 3-6 shows how an API gateway can
provide aggregation of backend service calls and translation of protocols.

Figure 3-6. An API gateway providing aggregation and translation

Protect APIs from Overuse and Abuse: Threat Detection
and Mitigation
The edge of a system is where your users first interact with your applications.
It is also often the the point where bad actors and hackers first encounter your
systems. Although the vast majority of enterprise organizations will have multiple
security-focused layers to their edge stack, such as a content delivery network (CDN)
and web application firewall (WAF), and even a perimeter network and dedicated
demilitarized zone (DMZ), for many smaller organizations the API gateway can be
the first line of defense. For this reason, many API gateways include security-focused
functionality, such as TLS termination, authentication/authorization, IP allow/deny
lists, WAFs (either inbuilt or via external integration), rate limiting and load shed‐
ding, and API contract validation. Figure 3-7 highlights how an allow/deny list and
rate-limiting can be used to mitigate abuse of APIs.
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1 Cindy Sridharan’s O’Reilly book Distributed Systems Observability is a great primer for learning more about
the topic of observability.

2 See, for example, OpenZipkin b3 headers.

Figure 3-7. API gateway overuse and abuse

A big part of this functionality is the capability to detect API abuse, either accidental
or deliberate, and for this you will need to implement a comprehensive observability
strategy.

Understand How APIs Are Being Consumed: Observability
Understanding how systems and applications are performing is vitally important for
ensuring business goals are being met and that customer requirements are being sat‐
isfied.1 It is increasingly common to measure business objectives via key performance
indicators (KPIs), such as customer conversion, revenue per hour, stream starts per
second, and more. Infrastructure and platforms are typically observed through the
lens of service-level indicators (SLIs), such as latency, errors, queue depth, and the
like.

As the vast majority (if not all) of user requests flow through the edge of a system,
this is a vital point for observability. It is an ideal location to capture top-line ingress
metrics, such as the number of errors, throughput, and latency, and it is also a key
location for identifying and annotating requests (potentially with application-specific
metadata) that flow throughout the system further upstream. Correlation identifiers2
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are typically injected into a request via the API gateway and then can be propagated
by each upstream service. These identifiers can then be used to correlate log entries
and request traces across services and systems.

Although the emitting and collecting of observability data is important at the system
level, you will also need to think carefully how to process, analyze, and interpret
this data into actionable information that can then be used to drive decision making.
Creating dashboards for visual display and manipulation, and also defining alerts, are
vital for a successful observability strategy.

Manage APIs as Products: API Lifecycle Management
Modern APIs are often designed, built, and run as products that are consumed by
both internal systems and third parties, and they must be managed as such. Many
large organizations see APIs as a critical and strategic component and, as such,
will create an API program strategy and set clear business goals, constraints, and
resources. With a strategy set, the day-to-day tactical approach is often focused on
API lifecycle management. Full lifecycle API Management (APIM) spans the entire
lifespan of an API that begins at the planning stage and ends when an API is retired.
Many of the stages within the lifecycle are heavily coupled to the implementation
provided by an API gateway. For these reasons, choosing an appropriate API gateway
is a critical decision if you are supporting APIM.

There are multiple definitions for key API lifecycle stages, and we believe that the
Axway team strikes a good balance with defining 3 key components—create, control,
and consume—and 10 top stages of an API lifecycle:

Building
Designing and building your API.

Testing
Verifying functionality, performance, and security expectations.

Publishing
Exposing your APIs to developers.

Securing
Mitigating security risks and concerns.

Managing
Maintaining and managing APIs to ensure they are functional, up-to-date, and
meeting business requirements.
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Onboarding
Enabling developers to quickly learn how to consume the APIs exposed. For
example, offering OpenAPI or AsyncAPI documentation and providing a portal
and sandbox.

Analyzing
Enabling observability and analyzing monitoring data to understand usage and
detect issues.

Promoting
Advertising APIs to developers—for example, listing in an API marketplace.

Monetizing
Enabling the charging for and collection of revenue for use of an API. We cover
this aspect of API lifecycle management as a separate stage in the next section.

Retirement
Supporting the deprecation and removal of APIs, which happens for a variety
of reasons, including business priority shifts, technology changes, and security
concerns.

Figure 3-8 demonstrates how API lifecycle management integrates with an API
gateway and backend services.

Figure 3-8. API gateway lifecycle management
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3 Examples include Apigee Edge and 3Scale.

Monetize APIs: Account Management, Billing, and Payment
The topic of billing-monetized APIs is closely related to API lifecycle management.
The APIs being exposed to customers typically have to be designed as a product and
offered via a developer portal that also includes account management and payment
options. Many of the enterprise API gateways include monetization.3 These payment
portals often integrate with payment solutions, such as PayPal or Stripe, and enable
the configuration of developer plans, rate limits, and other API consumption options.

A Modern History of API Gateways
Now that you have a good understanding of the “what,” “where,” and “why” of API
gateways, it is time to take a glance backward through history before looking forward
to current API gateway technology. As Mark Twain was alleged to have said, “history
doesn’t repeat itself, but it often rhymes,” and anyone who has worked in technology
for more than a few years will definitely appreciate the relevance this quote has to
the general approach seen in the industry. Architecture style and patterns repeat in
various “cycles” throughout the history of software development, as do operational
approaches. There is typically progress made between these cycles, but we collectively
need to be careful not to miss the teachings that history has to offer.

This is why it is important to understand the historical context of API gateways and
traffic management at the edge of systems. By looking backward we can build on firm
foundations, understand fundamental requirements, and also try to avoid repeating
the same mistakes.

1990s Onward: Hardware Load Balancers
The concept of the World Wide Web (WWW) was proposed by Tim Berners-Lee
in the late 1980s, but this didn’t enter the consciousness of the general public until
the mid-1990s, where the initial hype culminated in the dot-com boom and bust of
the late ’90s. This “Web 1.0” period drove the evolution of web browsers (Netscape
Navigator was launched late 1994), the web server (Apache Web Server was released
in 1995), and hardware load balancers (F5 was founded in 1996). The Web 1.0
experience consisted of users visiting websites via making HTTP requests using their
browser, and the entire HTML document for each target page being returned in the
response. Dynamic aspects of a website were implemented via Common Gateway
Interface (CGI) in combination with scripts written in languages like Perl or C. This
was arguably the first incantation of what we would call “function as a service (FaaS)”
today.
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As an increasing number of users accessed each website, this strained the underlying
web servers. This added the requirement to design systems that supported spreading
the increased load and also provide fault tolerance. Hardware load balancers were
deployed at the edge of the data center, with the goal of allowing infrastructure engi‐
neers, networking specialists, and sysadmins to spread user requests over a number of
web server instances. These early load balancer implementations typically supported
basic health checks, and if a web server failed or began responding with increased
latency, then user requests could be routed elsewhere accordingly. Hardware load bal‐
ancers are still very much in use today. The technology may have improved alongside
transistor technology and chip architecture, but the core functionality remains the
same.

Early 2000s Onward: Software Load Balancers
As the web overcame the early business stumbles from the dot-com bust, the demand
for supporting a range of activities, such as users sharing content, ecommerce and
online shopping, and businesses collaborating and integrating systems, continued
to increase. In reaction, web-based software architectures began to take a number
of forms. Smaller organizations were building on their early work with CGI and
were also creating monolithic applications in the emerging web-friendly languages
such as Java and .NET. Larger enterprises began to embrace service-oriented architec‐
ture (SOA), and the associated “Web Service” specifications (WS-*) enjoyed a brief
moment in the sun.

The requirements for high availability and scalability of websites were increasing,
and the expense and inflexibility of early hardware load balancers was beginning
to become a constraining factor. Enter software load balancers and general-purpose
proxies that could be used to implement this functionality, with HAProxy being
launched in 2001 and NGINX in 2002. The target users were still operations teams,
but the skills required meant that sysadmins comfortable with configuring software-
based web servers were increasingly happy to take responsibility for what used to be a
hardware concern.

Software Load Balancers: Still a Popular Choice Today

Although they have both evolved from initial launches, NGINX
and HAProxy are still widely in use, and they are still very useful
for small organizations and simple API gateway use cases (both
also offer commercial variants more suitable for enterprise deploy‐
ment). The rise of the cloud (and virtualization) cemented the role
of software load balancers, and we recommend learning about the
basics of this technology.
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This time frame also saw the rise of other edge technologies that still required
specialized hardware implementation. Content delivery networks (CDNs), primarily
driven by the need to eliminate performance bottlenecks of the internet, began to
be increasingly adopted in order to offload requests from origin web servers. Web
application firewalls (WAFs) also began to see increasing adoption, first implemented
using specialized hardware, and later via software. The open source ModSecurity
project, and the integration of this with the Apache Web Server, arguably drove mass
adoption of WAFs.

Mid-2000s: Application Delivery Controllers (ADCs)
The mid-2000s continued to see the increasing pervasiveness of the web in everyday
life. The emergence of internet-capable phones only accelerated this, with BlackBerry
initially leading the field, and everything kicking into a higher gear with the launch
of the first iPhone in 2007. The PC-based web browser was still the de facto method
of accessing the web, and the mid-2000s saw the emergence of “Web 2.0” alongside
widespread adoption in browsers of the XMLHttpRequest API and the correspond‐
ing technique named Asynchronous JavaScript and XML (Ajax). At the time, this
technology was revolutionary. The asynchronous nature of the API meant that no
longer did an entire HTML page have to be returned, parsed, and the display com‐
pletely refreshed with each request. By decoupling the data interchange layer from the
presentation layer, Ajax allowed web pages to change content dynamically without
the need to reload the entire page.

All of these changes placed new demands on web servers and load balancers for yet
again handling more load but also supporting more secure (SSL) traffic, increasingly
large (media rich) data payloads, and different priority requests. This led to the
emergence of application delivery controllers (ADCs), a term coined by the existing
networking players like F5 Networks, Citrix, and Cisco. ADCs provided support
for compression, caching, connection multiplexing, traffic shaping, and SSL offload,
combined with load balancing. The target users were once again infrastructure engi‐
neers, networking specialists, and sysadmins.

By the mid-2000s nearly all of the components of a modern traffic management edge
stack were widely adopted across the industry. However, the implementation and
operation of many of the components was increasingly being siloed between teams.
If a developer wanted to expose a new application within a large organization, this
typically meant many separate meetings with the CDN vendors, the load balancing
teams, the InfoSec and WAF teams, and the web/application server team. Movements
like DevOps emerged, partly driven by a motivation to remove the friction imposed
by these silos. If you still have a large number of layers in your edge stack and are
migrating to the cloud or a new platform, now is the time to potentially think about
the trade-offs with multiple layers and specialist teams.
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Early 2010s: First-Generation API Gateways
The late 2000s and early 2010s saw the emergence of the API economy and associ‐
ated technologies. Organizations like Twilio were disrupting telecommunications,
with their founder, Jeff Lawson, pitching that “We have taken the entire messy and
complex world of telephony and reduced it to five API calls.” The Google Ads API
was enabling content creators to monetize their websites, and Stripe was enabling
larger organizations to easily charge for access to services. Founded in late 2007,
Mashape was one of the early pioneers in attempting to create an API marketplace
for developers. Although this exact vision didn’t pan out (arguably it was ahead of
its time, looking now to the rise of “no code”/“low code” solutions), a byproduct of
the Mashape business model was the creation of the Kong API Gateway, built upon
OpenResty and the open source NGINX implementation. Other implementations
included WSO2 with Cloud Services Gateway, Sonoa Systems with Apigee, and Red
Hat with 3Scale Connect.

These were the first edge technologies that were targeted at developers in addition
to platform teams and sysadmins. A big focus was on managing the software develop‐
ment lifecycle (SDLC) of an API and providing system integration functionality, such
as endpoints and protocol connectors, and translation modules. Due to the range of
functionality offered, the vast majority of first-generation API gateways were imple‐
mented in software. Developer portals sprang up in many products, which allowed
engineers to document and share their APIs in a structured way. These portals
also provided access controls, user/developer account management, and publishing
controls and analytics. The theory was that this would enable the easy monetization
of APIs and the management of “APIs as a product.”

During this evolution of developer interaction at the edge, there was increasing focus
on the HTTP part of the application layer (layer 7) of the OSI Networking model. The
previous generations of edge technologies often focused on IP addresses and ports,
which primarily operate at the transport layer (layer 4) of the OSI model. Allowing
developers to make routing decisions in an API gateway based on HTTP metadata
such as path-based routing or header-based routing provided the opportunity for
richer functionality.

There was also an emerging trend toward creating smaller service-based architectures
that took some of the ideas present in the original SOA, but recast using more light‐
weight implementation technologies and protocols. Organizations were extracting
single-purpose standalone applications from their existing monolithic codebases, and
some of these monoliths acted as an API gateway, or provided API gateway–like
functionality, such as routing and authentication. With the first generation of API
gateways it was often the case that both functional and cross-functional concerns,
such as routing, security, and resilience, were performed both at the edge and also
within the applications and services.
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2015 Onward: Second-Generation API Gateways
The mid-2010s saw the rise of the next generation of modular and service-oriented
architectures, with the concept of “microservices” firmly entering the zeitgeist by
2015. This was largely thanks to “unicorn” organizations like Netflix, AWS, and Spo‐
tify sharing their experiences of working with these architectural patterns. In addition
to backend systems being decomposed into more numerous and smaller services,
developers were also adopting container technologies based on Linux LXC. Docker
was released in March of 2013, and Kubernetes followed hot on its heels with a v1.0
release in July of 2015. This shift in architectural style and changing runtimes drove
new requirements at the edge. Netflix released its bespoke JVM-based API gateway,
Zuul, in mid-2013. Zuul supported service discovery for dynamic backend services
and also allowed Groovy scripts to be injected at runtime in order to dynamically
modify behavior. This gateway also consolidated many cross-cutting concerns into a
single edge component, such as authentication, testing (canary releases), rate limiting
and load shedding, and observability. Zuul was a revolutionary API gateway in the
microservices space, and it has since evolved into a second version, and Spring Cloud
Gateway has been built on top of this.

With the increasing adoption of Kubernetes and the open source release of the
Envoy Proxy in 2016 by the Lyft Engineering team, many API gateways were created
around this technology, including Ambassador Edge Stack (built upon the CNCF
Emissary-ingress), Contour, and Gloo Edge. This drove further innovation across the
API gateway space, with Kong mirroring functionality offered by the next generation
of gateways and other gateways being launched, such as Traefik, Tyk, and others.

Confusion in the Cloud: API Gateways, Edge Proxies,
and Ingress Controllers

As Christian Posta noted in his blog post “API Gateways Are Going Through an
Identity Crisis”, there is some confusion around what an API gateway is in relation
to proxy technologies being adopted within the cloud computing domain. Generally
speaking, in this context an API gateway enables some form of management of APIs,
ranging from simple adaptor-style functionality operating at the application layer
(OSI layer 7) that provides fundamental cross-cutting concerns, all the way to full
lifecycle API management. Edge proxies are more general-purpose traffic proxies or
reverse proxies that operate at the network and transport layers (OSI layers 3 and 4,
respectively), provide basic cross-cutting concerns, and tend not to offer API-specific
functionality. “Ingress Controllers” are a Kubernetes-specific technology that controls
what traffic enters a cluster and how this traffic is handled.

72 | Chapter 3: API Gateways: Ingress Traffic Management

https://oreil.ly/rdN4q
https://oreil.ly/Qkufv
https://oreil.ly/Qkufv


The target users for the second generation of API gateways were largely the same
as the cohort for the first generation but with a clearer separation of concerns
and a stronger focus on developer self-service. The move from the first to second
generation of API gateways saw increased consolidation of both functional and
cross-functional requirements being implemented in the gateway. Although it became
widely accepted that microservices should be built around the idea espoused by
James Lewis and Martin Fowler of “smart endpoints and dumb pipes,” the uptake of
polyglot language stacks means that “microservice gateways” emerged (more detail in
the next section) that offered cross-cutting functionality in a language-agnostic way.

Current API Gateway Taxonomy
As can be the case with terminology in the software development industry, there
often isn’t an exact agreement on what defines or classifies an API gateway. There is
broad agreement in regards to the functionality this technology should provide, but
different segments of the industry have different requirements, and hence different
views, for an API gateway. This has led to several subtypes of API gateway emerging
and being discussed. In this section of the chapter, you will explore the emerging
taxonomy of API gateways and learn about their respective use cases, strengths, and
weaknesses.

Traditional Enterprise Gateways
The traditional enterprise API gateway is typically aimed at the use case of exposing
and managing business-focused APIs. This gateway is also often integrated with a full
API lifecycle management solution, as this is an essential requirement when releasing,
operating, and monetizing APIs at scale. The majority of gateways in this space may
offer an open source edition, but there is typically a strong usage bias toward the
open core/commercial version of the gateway.

These gateways typically require the deployment and operation of dependent serv‐
ices, such as data stores. These external dependencies have to be run with high availa‐
bility to maintain the correct operation of the gateway, and this must be factored into
running costs and DR/BC plans.

Microservices/Micro Gateways
The primary use case of a microservices API gateway, or micro API gateway, is to
route ingress traffic to backend APIs and services. In comparison with traditional
enterprise gateways, there are typically not many features provided for the manage‐
ment of API lifecycles. These types of gateways are often available and fully featured
as open source or are offered as a lightweight version of a traditional enterprise
gateway.
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They tend to be deployed and operated as standalone components and often make
use of the underlying platform (e.g., Kubernetes) for the management of any internal
state, such as API lifecycle data, rate limiting counts, and API consumer account
management. As microservices gateways are typically built using modern proxy tech‐
nology like Envoy, the integration capabilities with service meshes (especially those
built using the same proxy technology) are typically good.

Service Mesh Gateways
The ingress or API gateway included with a service mesh is typically designed to
provide only the core functionality of routing external traffic into the mesh. For this
reason they often lack some of the typical enterprise features, such as comprehensive
integration with authentication and identity provider solutions, and also integration
with other security features, such as a WAF.

The service mesh gateway typically manages state using its own internal implementa‐
tion or that provided by the platform (e.g., Kubernetes). This type of gateway is also
implicitly coupled with the associated service mesh (and operational requirements),
and so if you are not yet planning to deploy a service mesh, then this is most likely
not a good first choice of API gateway.

Comparing API Gateway Types
Table 3-3 highlights the difference between the three most widely deployed API
gateway types across six important criteria.

Table 3-3. Comparison of enterprise, microservices, and service mesh API gateway

Use case Traditional enterprise API
gateway

Microservices API
gateway

Service mesh gateway

Primary Purpose Expose, compose, and manage
internal business APIs and
associated services.

Expose, compose, and
manage internal business
services.

Expose internal services
within the mesh.

Publishing Functionality API management team or service
team registers/updates gateway
via admin API (in mature
organizations this is achieved
through delivery pipelines).

Service team registers/
updates gateway via
declarative code as part of
the deployment process.

Service team registers/
updates mesh and
gateway via declarative
code as part of the
deployment process.

Monitoring Admin and operations focused,
e.g., meter API calls per
consumer, report errors (e.g.,
internal 5XX).

Developer focused, e.g.,
latency, traffic, errors,
saturation.

Platform focused, e.g.,
utilization, saturation,
errors.
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4 Martin Fowler’s take on StranglerFigApplication.

Use case Traditional enterprise API
gateway

Microservices API
gateway

Service mesh gateway

Handling and Debugging Issues L7 error-handling (e.g., custom
error page). For troubleshooting,
run gateway/API with additional
logging and debug issue in
staging environment.

L7 error-handling (e.g.,
custom error page,
failover, or payload).
For debugging issues
configure more detailed
monitoring, and enable
traffic shadowing and/or
canarying to re-create the
problem.

L7 error-handling (e.g.,
custom error page
or payload). For
troubleshooting, configure
more detailed monitoring
and/or utilize traffic
“tapping” to view and
debug specific service-to-
service communication.

Testing Operate multiple environments
for QA, staging, and production.
Automated integration testing,
and gated API deployment. Use
consumer-driven API versioning
for compatibility and stability
(e.g., semver).

Enables canary routing
and dark launching for
dynamic testing. Use
contract testing for
upgrade management.

Facilitate canary routing
for dynamic testing.

Local Development Deploy gateway locally (via
installation script, Vagrant, or
Docker), and attempt to mitigate
infrastructure differences with
production. Use language-
specific gateway mocking and
stubbing frameworks.

Deploy gateway locally
via service orchestration
platform (e.g., container,
or Kubernetes).

Deploy service mesh
locally via service
orchestration platform
(e.g., Kubernetes).

User Experience Web-based administration UI,
developer portal, and service
catalog.

IaC or CLI-driven, with
simple developer portal
and service catalog.

IaC or CLI-driven, with
limited service catalog.

Case Study: Evolving the Conference System Using
an API Gateway
In this section of the chapter, you will learn how to install and configure an API gate‐
way to route traffic directly to the Attendee service that has been extracted from the
monolithic conference system. This will demonstrate how you can use the popular
“strangler fig” pattern,4 which is covered in more detail under “Strangler Fig” on page
203, to evolve your system from a monolith to a microservices-based architecture
over time by gradually extracting pieces of an existing system into independently
deployable and runnable services. Figure 3-9 provides an overview of the conference
system architecture with the addition of an API gateway.
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Figure 3-9. Using an API gateway to route to a new Attendee service running independ‐
ently from the monolith

Many organizations often start such a migration by extracting services but have the
monolithic application perform the routing and other cross-cutting concerns for the
externally running services. This is often the easy choice, as the monolith already
has to provide this functionality for internal functions. However, this leads to tight
coupling between the monolith and services, with all traffic flowing through the
monolithic application and the configuration cadence determined by the frequency
of deployment of the monolith. From a traffic management perspective, both the
increased load on the monolithic application and increased blast radius if this does
fail mean the operational cost can be high. And being limited in updating routing
information or cross-cutting configuration due to a slow release train or a failed
deployment can prevent you from iterating at speed. Because of this, we generally do
not recommend using the monolith to route traffic in this fashion, particularly if you
plan to extract many services within a relatively short time scale.

As long as the gateway is deployed to be highly available and developers have direct
(self-service) access to manage routing and configuration, extracting and centralizing
application routing and cross-cutting concerns to an API gateway provide both safety
and speed. Let’s now walk through a practical example of deploying an API gateway
within the conference system and using this to route to the new Attendee service.

Installing Ambassador Edge Stack in Kubernetes
As you are deploying the conference system into a Kubernetes cluster, you can easily
install an API gateway using the standard Kubernetes-native approaches, such as
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applying YAML config or using Helm, in addition to using command-line utilities.
For example, the Ambassador Edge Stack API gateway can be installed using Helm.
Once you have deployed and configured this API gateway, you can easily acquire a
TLS certification from LetsEncrypt by following the Host configuration tutorial.

With the API gateway up and running and providing an HTTPS connection, the
conference system application no longer needs to be concerned with terminating
TLS connections or listening to multiple ports. Similarly, authentication and rate
limiting can also be easily configured without having to reconfigure or deploy your
application.

Configuring Mappings from URL Paths to Backend Services
You can now use an Ambassador Edge Stack Mapping Custom Resource to map
the root of your domain to the “conferencesystem” service listening on port 8080
and running in the “legacy” namespace within the Kubernetes cluster. This Mapping
should be familiar to anyone who has configured a web application or reverse proxy
to listen for user requests. The metadata provides a name for the Mapping, and the
prefix determines the path (the “/” root in this case) that is mapped to the target
service (with the format service-name.namespace:port). Here is an example:

---
apiVersion: getambassador.io/v3alpha1
kind: Mapping
metadata:
  name: legacy-conference
spec:
  hostname: "*"
  prefix: /
  rewrite: /
  service: conferencesystem.legacy:8080

Another Mapping can be added to route any traffic sent to the “/attendees” path
to the new (“nextgen”) attendees microservice that has been extracted from the
monolith. The information included in the Mapping should look familiar from the
previous example. Here a rewrite is specified that “rewrites” the matching prefix
path in the URL metadata before making the call to the target Attendee service. This
makes it appear to the Attendee service that the request originated with the “/” path,
effectively stripping out the “/attendees” part of the path.

---
apiVersion: getambassador.io/v3alpha1
kind: Mapping
metadata:
  name: legacy-conference
spec:
  hostname: "*"
  prefix: /attendees
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  rewrite: /
  service: attendees.nextgen:8080

This pattern of creating additional Mappings as each new microservice
is extracted from the legacy application can continue. Matching prefixes
can be nested (e.g., /attendees/affiliation), or use regular expressions
(e.g., /attendees/^[a-z].*"). Eventually the legacy application becomes a small
shell with only a handful of functions, and all of the other functionality is handled by
microservices, each with their own Mapping.

Configuring Mappings Using Host-based Routing
Most API gateways will also let you perform host-based routing (e.g., host: attend
ees.conferencesystem.com). This can be useful if you need to create a new domain
or subdomain to host the new services. An example of this using Ambassador Edge
Stack Mappings is shown here:

---
apiVersion: getambassador.io/v3alpha1
kind:  Mapping
metadata:
  name:  attendees-host
spec:
  hostname: "attendees.conferencesystem.com"
  prefix: /
  service: attendees.nextgen:8080

Many modern API gateways will also support routing based on paths or query
strings. Whatever your requirements, and whatever the limitations of your current
infrastructure, you should be able to easily route to both your existing application
and new services.

Avoid Routing on Request Payloads

Some API gateways will enable routing based on the payload or
body of a request, but this should generally be avoided for two rea‐
sons. First, this often leaks highly coupled domain-specific infor‐
mation into the API gateway config (e.g., a payload often conforms
to a schema/contract that may change in the application, which
the gateway will now need to be synchronized with). And second,
it can be computationally expensive (and time-consuming) to dese‐
rialize and parse a large payload in order to extract the required
information for routing.
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Deploying API Gateways: Understanding and
Managing Failure
Regardless of the deployment pattern and number of gateways involved within a sys‐
tem, an API gateway is typically on the critical path of many, if not all, user requests
entering into your system. An outage of a gateway deployed at the edge typically
results in the unavailability of the entire system. And an outage of a gateway deployed
further upstream typically results in the unavailability of some core subsystem. For
this reason the topics of understanding and managing failure of an API gateway are
vitally important to learn.

API Gateway as a Single Point of Failure
In a standard web-based system, the first obvious single point of failure is typically
DNS. Although this is often externally managed, there is no escaping the fact that
if this fails, then your site will be unavailable. The next single points of failure will
typically then be the global and regional layer 4 load balancers, and depending on the
deployment location and configuration, the security edge components, such as the
firewall or WAF.

After these core edge components, the next layer is typically the API gateway. The
more functionality you are relying on within the gateway, the bigger the risk involved
and the bigger the impact of an outage. As an API gateway is often involved in a
software release, the configuration is also continually being updated. It is critical to be
able to detect and resolve issues and mitigate any risks.

Challenge Assumptions with Security Single Points of Failure

Depending on the product, deployment, and configuration, some
security components may “fail open,” i.e., if the component fails
then traffic will simply be passed through to upstream components
or the backend. For some scenarios where availability is the most
important goal, this is desired, but for others (e.g., financial or
government systems), this is most likely not. Be sure to challenge
assumptions in your current security configuration.

Detecting and Owning Problems
The first stage in detecting issues is ensuring that you are collecting and have access
to appropriate signals from your monitoring system—i.e., data from metrics, logs,
and traces. Any critical system should have a clearly defined team that owns it and
is accountable for any issues. Teams should communicate service-level objectives
(SLOs), which can be codified into service-level agreements (SLAs) for both internal
and external customers.
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5 If you are new to this space, then the Learning from Incidents website is a fantastic jumping-off point.

Additional Reading: Observability, Alerting, and SRE

If you are new to the concept of observability, then we recom‐
mend learning more about Brendan Gregg’s utilization, saturation,
and errors (USE) method, Tom Wilkie’s rate, errors, and duration
(RED) method, and Google’s four golden signals of monitoring.
If you want to learn more about associated organizational goals
and processes, the Google Site Reliability Engineering (SRE) book is
highly recommended.

Resolving Incidents and Issues
First and foremost, each API gateway operating within your system needs an owner
that is accountable if anything goes wrong with the component. In a smaller organi‐
zation this may be the developers or SRE team who are also responsible for the
underlying services. In a larger organization this may be a dedicated infrastructure
team. As an API gateway is on the critical path of requests, some portion of this
owning team should be on call as appropriate (this may be 24/7/365). The on-call
team will then face the tricky task of fixing the issue as rapidly as possible, but also
gathering enough information (or locating and quarantining systems and configura‐
tion) to learn what went wrong.

After any incident, the organization should strive to conduct a blameless postmortem
and document and share all learning. Not only can this information be used to
prevent this issue from reoccurring, but this knowledge can be very useful for engi‐
neers learning the system and for external teams dealing with similar technologies or
challenges.5

Mitigating Risks
Any component that is on the critical path for handling user requests should be
made as highly available as is practical in relation to cost and operational complexity.
Software architects and technical leaders deal with trade-offs; this type is one of
the most challenging. In the world of API gateways, high availability typically starts
with running multiple instances. With on-premise/co-lo instances, this translates into
operating multiple (redundant) hardware appliances, ideally spread across separate
locations. In the cloud, this translates into designing and running the API gateway
instance in multiple availability zones/data centers and regions. If a (global) load bal‐
ancer is deployed in front of the API gateway instances, then this must be configured
appropriately with health checks and failover processes that must be tested regularly.
This is especially important if the API gateway instances run in active/passive or
leader/node modes of operation.
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You must ensure that your load balancer to API gateway failover process meets
all of your requirements in relation to continuity of service. Common problems
experienced during failover events include:

• User client state management issues, such as backend state not being migrated•
correctly, which causes the failure of sticky sessions

• Poor performance, as clients are not redirected based on geographical considera‐•
tions (e.g., European users being redirected to the US west coast when an east
coast data center is available)

• Unintentional cascading failure, such as a faulty leader election component that•
results in deadlock, which causes all backend systems to become unavailable

Common API Gateway Implementation Pitfalls
You’ve already seen that no technology is a silver bullet, but, continuing on the theme
of technology cliches, it can be the case that when you have a technology hammer,
everything tends to look like a nail. This can be the case with an API gateway
“hammer,” and there are several common API gateway pitfalls or antipatterns that
you should always aim to avoid.

API Gateway Loopback
As with all common pitfalls, the implementation of this pattern often begins with
good intentions. When an organization has only a few services, this typically doesn’t
warrant the installation of a service mesh. However, a subset of service mesh func‐
tionality is often required, particularly service discovery. An easy implementation is
to route all traffic through the edge or API gateway, which maintains the official
directory of all service locations. At this stage the pattern looks somewhat like a “hub
and spoke” networking diagram. The challenges present themselves in two forms:
first, when all of the service-to-service traffic is leaving the network before reentering
via the gateway, this can present performance, security, and cost concerns (cloud
vendors often charge for egress and inter-availability zone traffic); and second, this
pattern doesn’t scale beyond a handful of services, as the gateway becomes overloaded
and a bottleneck, and it becomes a true single point of failure. This pattern can
also add complexity to observability, as multiple cycles can make it challenging to
understand what has happened with each call.
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Looking at the current state of the conference system with the two Mappings
that you have configured, you can see the emergence of this issue. Any external
traffic, such as user requests, are correctly being routed to their target services by
the API gateway. However, how does the legacy application discover the location
of the Attendee service? Often the first approach is to route all requests back
through the publicly addressable gateway (e.g., the legacy application makes calls
to www.conferencesystems.com/attendees). Instead, the legacy application should
use some form of internal service discovery mechanism and keep all of the internal
requests within the internal network. You will learn more about how to use a service
mesh to implement this in the next chapter.

API Gateway as an ESB
The vast majority of API gateways support the extension of their out-of-the-box
functionality via the creation of plug-ins or modules. NGINX supported Lua mod‐
ules, which OpenResty and Kong capitalized on. Envoy Proxy originally supported
extensions in C, and now WebAssembly filters. And we’ve already discussed how
the original implementation of Netflix’s Zuul API gateway supported extension via
Groovy scripts in “2015 Onward: Second-Generation API Gateways” on page 72.
Many of the use cases realized by these plug-ins are extremely useful, such as authn/z,
filtering, and logging. However, it can be tempting to put business logic into these
plug-ins, which is a way to highly couple your gateway with your service or applica‐
tion. This leads to a potentially fragile system, where a change in a single plug-in
ripples throughout the organization or adds additional friction during release where
the target service and plug-in have to be deployed in lockstep.

Turtles (API Gateways) All the Way Down
If one API gateway is good, more must be better, right? It is common to find multiple
API gateways deployed within the context of large organization, often in a hierarchi‐
cal fashion, or in an attempt to segment networks or departments. The intentions
are typically good: either for providing encapsulation for internal lines of business,
or for a separation of concerns with each gateway (e.g., “this is the transport security
gateway, this is the auth gateway, this is the logging gateway…”). The common pitfall
rears its head when the cost of change is too high—e.g., you have to coordinate
with a large number of gateway teams to release a simple service upgrade, there are
understandability issues (“who owns the tracing functionality?”), or performance is
impacted as every network hop naturally incurs a cost.
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Selecting an API Gateway
Now that you learned about the functionality provided by an API gateway, the history
of the technology, and how an API gateway fits into the overall system architecture,
next is the $1M question: how do you select an API gateway to include in your stack?

Identifying Requirements
One of the first steps with any new software delivery or infrastructure project is
identifying the related requirements. This may appear obvious, but it is all too easy to
get distracted by shiny technology, magical marketing, or good sales documentation!

You can look back to the earlier section “Why Use an API Gateway?” on page 61
of this chapter to explore in more detail the high-level requirements you should be
considering during the selection process. It is important to ask questions that are both
focused on current pain points and also your future roadmap.

Build Versus Buy
A common discussion when selecting an API gateway is the “build versus buy”
dilemma. This is not unique to this component of a software system, but the func‐
tionality offered via an API gateway does lead to some engineers gravitating to this—
that they could build this “better” than existing vendors, or that their organization
is somehow “special” and would benefit from a custom implementation. In general,
we believe that the API gateway component is sufficiently well-established that it is
typically best to adopt an open source implementation or commercial solution rather
than build your own. Presenting the case for build versus buy with software delivery
technology could take an entire book, and so in this section we only want to highlight
some common challenges:

Underestimating the total cost of ownership (TCO)
Many engineers discount the cost of engineering a solution, the continued main‐
tenance costs, and the ongoing operational costs.

Not thinking about opportunity cost
Unless you are a cloud or platform vendor, it is highly unlikely that a custom API
gateway will provide you with a competitive advantage. You can deliver more
value to your customers by building some functionality closer to your overall
value proposition.

Not being aware of current technical solutions of products
Both the open source and commercial platform component space move fast, and
it can be challenging to keep up-to-date. This, however, is a core part of the role
of being a technical leader.
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ADR Guideline: Selecting an API Gateway
Table 3-4 provides a series of key ADR Guidelines that can be used to help you decide
which API gateway to implement within your current organization or project.

Table 3-4. ADR Guideline: Selecting an API gateway checklist
Decision How should we approach selecting an API gateway for our organization?

Discussion Points Have we identified and prioritized all of our requirements associated with selecting an API gateway?
Have we identified current technology solutions that have been deployed in this space within the
organization?
Do we know all of our team and organizational constraints?
Have we explored our future roadmap in relation to this decision?
Have we honestly calculated the “build versus buy” costs?
Have we explored the current technology landscape and are we aware of all of the available solutions?
Have we consulted and informed all involved stakeholders in our analysis and decision making?

Recommendations Focus particularly on your requirement to reduce API/system coupling, simplify consumption, protect
APIs from overuse and abuse, understand how APIs are being consumed, manage APIs as products, and
monetize APIs.
Key questions to ask include: is there an existing API gateway in use? Has a collection of technologies
been assembled to provide similar functionality (e.g., hardware load balancer combined with a
monolithic app that performs authentication and application-level routing)? How many components
currently make up your edge stack (e.g., WAF, LB, edge cache, etc.)?
Focus on technology skill levels within your team, availability of people to work on an API gateway
project, and available resources and budget, etc.
It is important to identify all planning changes, new features, and current goals that could impact traffic
management and the other functionality that an API gateway provides.
Calculate the total cost of ownership (TCO) of all of the current API gateway-like implementations and
potential future solutions.
Consult with well-known analysts, trend reports, and product reviews in order to understand all of the
current solutions available.
Selecting and deploying an API gateway will impact many teams and individuals. Be sure to consult with
the developers, QA, the architecture review board, the platform team, InfoSec, etc.
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Summary
In this chapter, you have learned what an API gateway is and also explored the
historical context that led to the evolution of the features currently provided by this
essential component in any web-based software stack:

• You have learned how an API gateway is a very useful tool for migrating and•
evolving systems and have gotten hands-on with how to use an API gateway to
route to the Attendee service that was extracted from the conference system use
case.

• You have explored the current taxonomy of API gateways and their deployment•
models, which has equipped you to think about how to manage potential single
points of failure in an architecture where all user traffic is routed through an edge
gateway.

• Building on the concepts of managing traffic at the (ingress) edge of systems, you•
have learned about service-to-service communication and how to avoid common
pitfalls such as deploying an API gateway as a less-functional enterprise service
bus (ESB).

• The combination of all of this knowledge has equipped you with the key thinking•
points, constraints, and requirements necessary to make an effective choice when
selecting an API gateway for your current use cases.

• As with most decisions a software architect or technical leader has to make, there•
is no distinct correct answer, but there often can be quite a few bad solutions to
avoid.

Now that you have explored the functionality that API gateways provide for manag‐
ing north–south ingress traffic and related APIs, the next chapter will explore the role
of service meshes for managing east–west, service-to-service traffic.
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CHAPTER 4

Service Mesh: Service-to-Service
Traffic Management

In the previous chapter you explored how to expose your APIs and manage associ‐
ated ingress traffic from end users and other external systems in a reliable, observa‐
ble, and secure way using an API gateway. Now you will learn about managing traffic
for internal APIs, i.e., service-to-service communication, with similar goals.

At a fundamental level, service mesh implementations provide functionality for rout‐
ing, observing, and securing traffic for service-to-service communication. It is worth
saying that even this choice of technology is not a slam dunk; as with all architectural
decisions, there are trade-offs; there is no such thing as a free lunch when you are
performing the role of architect!

In this chapter you will evolve the case study by extracting the sessions-handling
functionality from the legacy conference system into a new internally facing Session
service. As you do this you will learn about the communication challenges introduced
by creating or extracting new services and APIs that are deployed and run alongside
the existing monolithic conference system. All of the API and traffic management
techniques you explored in the previous chapter will apply here, and so your natural
inclination may be to use an API gateway to expose the new Session service. However,
given the requirements, this would most likely result in a suboptimal solution. This
is where the service mesh pattern and associated technologies can provide an alterna‐
tive approach.

Is Service Mesh the Only Solution?
Practically every web-based software application needs to make service-to-service-
like calls, even if this is simply a monolithic application interacting with a database.
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Because of this, solutions to manage this type of communication have long existed.
The most common approach is to use a language-specific library, such as a software
development kit (SDK) library or database driver. These libraries map application-
based calls to service API requests and also manage the corresponding traffic, typi‐
cally via the use of HTTP or TCP/IP protocols. As the design of modern applications
has embraced service-oriented architectures, the problem space of service-to-service
calls has expanded. It is a very common requirement for a service to need to call
another service’s API to satisfy a user’s request. In addition to providing a mechanism
of routing traffic, you will typically also require reliability, observability, and security.

As you will learn throughout this chapter, both a library and service mesh–based
solution can often satisfy your service-to-service communication requirements. We
have seen a rapid adoption of service meshes, particularly within an enterprise con‐
text, and as the number of consumers and providers increases, it is often the most
scalable, maintainable, and secure option. Because of this, we have primarily focused
this chapter on the service mesh pattern.

Guideline: Should You Adopt Service Mesh?
Table 4-1 provides a series of ADR Guidelines to help you decide whether you should
adopt service mesh technology in your organization.

Table 4-1. ADR Guideline: Service mesh or libraries guidelines
Decision Should you use a service mesh or a library for routing service traffic?

Discussion Points Do you use a single programming language within your organization?
Do you only require simple service-to-service routing for REST or RPC-like communication?
Do you have cross-functional requirements that will require more advanced features, such as
authentication, authorization, or rate limiting?
Do you already have a solution in place, or is there an organization-wide mandate that all traffic must be
routed through certain components within your network?

Recommendations If your organization mandates the use of a single programming language or framework, you can typically
take advantage of the language-specific libraries or mechanisms for service-to-service communication.
Always use the simplest solution for your requirements, with an eye to the immediate future and known
requirements.
If you have advanced cross-functional requirements, particularly across services that use different
programming languages or technology stacks, a service mesh may be the best choice.
Always perform due diligence within your organization for existing mandates, solutions, and
components.

Case Study: Extracting Sessions Functionality to a Service
For the next evolution of our conference system case study you will focus on the
conference owners’ requests to support a core new feature: View and manage an
attendee’s conference sessions via the mobile application.
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This is a major change that would warrant the creation of an ADR. Table 4-2 is an
example ADR that might have been proposed by the engineering team owning the
conference system.

Table 4-2. ADR501 Separating sessions from the legacy conference system

Status Proposed
Context The conference owners have requested another new feature to the current conference system. The

marketing team believes that conference attendee engagement will increase if an attendee can view
details of and indicate their interest in conference sessions via the mobile application. The marketing
team also wants to be able to see how many attendees are interested in each session.

Decision We will take an evolutionary step to split out the Session component into a standalone service. This
will allow API-first development against the Session service and allow the API to be invoked from
the legacy conference service. This will also allow the Attendee service to call the API of the Session
service directly in order to provide session information to the mobile application.

Consequences The legacy application will call the new Session service when handling all session-related queries,
both for existing and new functionality. When a user wants to view, add, or remove sessions they
are interested in at a conference, the Attendee service will need to call the Session service. When a
conference admin wants to see who is attending each session, the Session service will need to call
the Attendee service in order to determine who is attending each session. The Session service could
become a single point of failure in the architecture and we may need to take steps to mitigate the
potential impact of running a single Session service. Because the viewing and managing of sessions
by attendees increases dramatically during a live conference event, we will also need to account for
large traffic spikes and potentially one or more Session services becoming overloaded or acting in a
degraded fashion.

The C4 Model showing the proposed architectural change is shown in Figure 4-1.

Figure 4-1. C4 Model showing the extraction of the Session service from the conference
system
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1 The Linkerd project emerged from Twitter’s Finagle technology that was built to provide a communication
framework for developers building Twitter’s distributed applications. Linkerd has now evolved into a gradu‐
ated Cloud Native Computing Foundation (CNCF) project.

Note that even though the new Session service does not need to be exposed exter‐
nally, you could easily meet the routing and reliability requirements stated in the
preceding ADR by exposing this service via the API gateway and configuring both
the legacy system and Attendee service to call this new service via the gateway’s
external address. However, this would be an example of the “API gateway loopback”
antipattern you learned about in “Common API Gateway Implementation Pitfalls”
on page 81. This antipattern can lead to internally destined traffic potentially leaving
your network, which has performance, security, and (cloud vendor) cost implications.
Let’s now explore how a service mesh can help you meet your new requirements
while avoiding this antipattern.

What Is Service Mesh?
Fundamentally, “service mesh” is a pattern for managing all service-to-service (or
application-to-application) communication within a distributed software system.
There is a lot of overlap between the service mesh and API gateway patterns, with the
primary differences being twofold. First, service mesh implementations are optimized
to handle service-to-service, or east–west, traffic within a cluster or data center.
Second, following from this, the originator of the communication is typically a
(somewhat) known internal service, rather than a user’s device or a system running
external to your applications.

Service Mesh Is Not Mesh Networking

Service mesh is not to be confused with mesh networking, which is
a lower-level networking topology. Mesh networking is becoming
increasingly prevalent in the context of Internet of Things (IoT)
and also for implementing mobile communication infrastructure
in remote or challenging scenarios (such as disaster relief). Service
mesh implementations build on top of existing networking proto‐
cols and topologies.

The service mesh pattern focuses on providing traffic management (routing), resil‐
ience, observability, and security for service-to-service communication. Don’t worry
if you haven’t heard much about this pattern, as it was only in 2016 that the Buoyant
team coined the term to explain the functionality of their Linkerd technology.1

This, in combination with the introduction of other related technologies like the
Google-sponsored Istio, led to the rapid adoption of the term “service mesh” within
the domains of cloud computing, DevOps, and architecture.
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Much like an API gateway, a service mesh is implemented with two high-level
fundamental components: a control plane and data plane. In a service mesh these
components are always deployed separately. The control plane is where operators
interact with the service mesh and define routes, policies, and required telemetry. The
data plane is the location where all of the work specified in the control plane occurs
and where the network packets are routed, the policies enforced, and telemetry
emitted.

If we take configuring service-to-service traffic within a Kubernetes cluster as an
example, a human operator will first define routing and policy using Custom
Resource configuration—for example, in our case study, specifying that the Attendee
service can call the Session service—and then “apply” this to the cluster via a
command-line tool, like kubectl, or continuous delivery pipeline. A service mesh
controller application running within the Kubernetes cluster acts as the control
plane, parsing this configuration and instructing the data plane—typically a series of
“sidecar” proxies running alongside each of the Attendee and Session services—to
enact this.

Service Mesh Sidecars and Proxies
Within the context of a service mesh you will often see the terms “sidecars” and
“proxies” used interchangeably. However, this is not technically correct, as “sidecar” is
a general-purpose pattern that is typically implemented using a proxy within a service
mesh. Therefore any use of the word “sidecar” should also include the postfix “proxy”
(e.g., “sidecar proxy”). The sidecar pattern is inspired from the motorcycle sidecar
and consists of segregating the functionalities of an application or service into a series
of separate processes that are run within the same network and process namespace.
In software architecture a sidecar is attached to a parent application and extends/
enhances its functionalities in a loosely coupled fashion. This patterns allows you
to add a number of capabilities to your application without using language-specific
libraries or other techniques. You will learn more about the evolution of this pattern
within service mesh implementations in “Evolution of Service Mesh” on page 102.

All service-to-service traffic within the Kubernetes cluster is routed via the sidecar
proxies, typically transparently (without the underlying applications recognizing that
a proxy is involved), which enables all of this traffic to be routed, observed, and
secured as required. An example topology of the services and service mesh control
plane and data plane is shown in Figure 4-2.
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Figure 4-2. Topology of services and control plane and data plane of a service mesh
(using Istio as an example)

What Functionality Does a Service Mesh Provide?
At a network level, a service mesh proxy acts as a full proxy, accepting all inbound
traffic from other services and also initiating all outbound requests to other services.
This includes all API calls and other requests and responses. Unlike an API gateway,
the mapping from a service mesh data plane to a service is typically one-to-one,
meaning that a service mesh proxy does not aggregate calls across multiple services.
A service mesh provides cross-cutting functionality such as user verification, request
rate limiting, and timeouts/retries, and can provide metrics, logs, and trace data
in order to support the implementation of observability within the system. This is
exactly the functionality that we require for evolving our case study by extracting
the Session service and calling this from both the legacy conference system and the
Attendee service.
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Service Meshes Use Full Proxies to Intercept All Service Traffic
It is typical for all service mesh proxies to operate as “full proxies,” as they need
to observe and manipulate all of the traffic flowing through the mesh. In contrast
with a half proxy, a full proxy handles all the communication between the client
and server. A fundamental difference is that a full proxy maintains two distinct
network stacks—one on the client side and one on the server side—and fully proxies
both sides. With the proxy in the middle of all communications, it is possible to
manipulate, drop, observe, and do what is required to the traffic on both sides
and in both directions. This power and flexibility does, of course, come with a
trade-off in that a full proxy requires more resources and potentially introduces more
overhead/latency on communications.

Although less common in comparison with an API gateway, some service meshes
provide additional features that enable developers to manage the lifecycle of an
API. For example, an associated service catalog may assist with the onboarding
and management of developers using the service APIs, or a developer portal will
provide account administration and access control. Some service meshes also provide
auditing of policies and traffic management in order to meet enterprise governance
requirements.

Where Is a Service Mesh Deployed?
A service mesh is deployed within an internal network or cluster. Large systems or
networks are typically managed by deploying several instances of a service mesh,
often with each single mesh spanning a network segment or business domain.

Is a Service Mesh Deployed at the Edge?
Although deployed within a cluster, a service mesh may expose endpoints within a
network demilitarized zone (DMZ), or to external systems, or additional networks
or clusters. This is frequently implemented by using a proxy that is referred to as a
“mesh gateway,” “terminating gateway,” or “transit gateway.” These types of external
gateways do not typically provide the level of functionality commonly found within
an externally facing API gateway. There is some debate as to whether traffic manage‐
ment involving these service mesh gateways is north–south or east–west, and this can
impact requirements and the required security policies, etc.
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An example service mesh networking topology is shown in Figure 4-3.

Figure 4-3. A typical service mesh topology, deployed across two clusters (with solid
arrows showing service mesh traffic)

How Does a Service Mesh Integrate with Other
Networking Technologies?
A modern networking stack can have many layers, particularly when working with
cloud technologies where virtualization and sandboxing occur at multiple levels.
A service mesh should work in harmony with these other networking layers, but
developers and operators also need to be aware of potential interactions and conflict.
Figure 4-4 shows the interaction between physical (and virtualized) networking infra‐
structure, a typical networking stack, and a service mesh.
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2 You can learn more about Kubernetes networking concepts via the official docs: Service, NetworkPolicies, and
Container Networking Interface (CNI).

Figure 4-4. OSI model showing that a service mesh operates between layers 3 and 7

As an example, when deploying applications into a Kubernetes cluster, a Service can
locate and address another Service within the same cluster via a prescribed name
that maps to an IP address. Fundamental traffic control security policies can be
implemented with NetworkPolicies, which control traffic at the IP address and port
level (OSI layer 3 or 4), and additional policy controls are often provided by a cluster’s
Container Networking Interface (CNI) plug-in.2

Service meshes can override the default CNI service-to-IP address resolution and
routing and also provide additional functionality. This includes transparent routing
across clusters, enforcement of layer 3/4 and 7 security (such as user identity and
authorization), layer 7 load balancing (which is useful if you are using multiplexed
keepalive protocol like gRPC or HTTP/2), and observability at the service-to-service
level and throughout the networking stack.
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Why Use a Service Mesh?
In a similar fashion to deciding why you should deploy an API gateway into
your existing architecture, determining why to adopt a service mesh is a multi-
faceted topic. You need to balance both short-term implementation gains and costs
against the long-term maintainability requirements. There are many API-related
cross-cutting concerns that you might have for each or all of your internal services,
including product lifecycle management (incrementally releasing new versions of
a service), reliability, multilanguage communication support, observability, security,
maintainability, and extensibility. A service mesh can help with all of these.

This section of the chapter will provide you with an overview of the key problems
that a service mesh can address, such as:

• Enable fine-grained control of service routing, reliability, and traffic management•
• Improve observability of interservice calls•
• Enforce security, including transport encryption, authentication, and•

authorization
• Support cross-functional communication requirements across a variety of•

languages
• Separate ingress and service-to-service traffic management•

Fine-grained Control of Routing, Reliability, and Traffic Management
Routing traffic with a distributed microservices-based system can be more challeng‐
ing than it may first appear. Typically there will be multiple instances of a service
deployed into an environment with the goals of improving both performance (load
balancing across services) and reliability (providing redundancy). In addition, many
modern infrastructure platforms are built on “commodity hardware” that manifests
as ephemeral computing resources that can shut down, restart, or disappear at a
moment’s notice; and this means the location of a service can change from day-to-day
(or minute-to-minute!).

You can, of course, employ the routing technologies and associated techniques that
you learned about in Chapter 3. The challenge here is that there are typically many
more internal services and APIs in comparison with the number of external APIs that
are exposed by your applications, and the pace of change with internal systems and
their corresponding APIs and functionality is often much higher. Accordingly, the
operational cost would increase dramatically if you were to deploy an API gateway in
front of every internal service, both in regards to computing resources required and
human maintenance costs.
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3 Airbnb’s SmartStack was one of the first implementations of external microservice service discovery.

Transparent routing and service name normalization
Fundamentally, routing is the process of selecting a path for traffic in a network
or between or across multiple networks. Within web applications, network-level rout‐
ing has typically been handled within the TCP/IP stack and associated networking
infrastructure (at layer 3/4 of the OSI model). This means that only the IP address
and port of both the connection’s target and originator are required. Pre-cloud, and
often with on-premises data centers, the IP addresses of internal services are often
fixed and well-known. Even though DNS is widely used to map domain names to IP
addresses, it is still the case that heritage applications and services use hardcoded IP
addresses. This means that any changes to a service’s location require a redeployment
of all services that call this service.

With the adoption of the cloud and the ephemeral nature of our infrastructure
that comes with this, IP addresses of computing instances and their corresponding
services regularly change. This in turn means that if you hardcode IP and port
addresses, these will have to be frequently changed. As microservices-based architec‐
tures became more popular, the pain of redeploying increased in relation to the num‐
ber of services within an application. Early microservice adopters created solutions to
overcome this by implementing external “service discovery” directories or registries
containing a dynamic mapping of service names to IP address(es) and ports.3

Service meshes can handle this dynamic lookup of service name to location, exter‐
nally to the service and also transparently without the need for code modification,
redeployments, or restarts. Another benefit of a service mesh is that it can normal‐
ize naming across environments using “environment awareness” in combination
with configuration stored external to the application. For example, a service mesh
deployed to “production” will recognize that it is running in this environment.
The service mesh will then transparently map the code-level service name sessions-
service to the environment-specific location AWS-us-east-1a/prod/sessions/v2 by
looking up the location from a service registry (that may be integrated with the
mesh or run externally). The same code deployed to the staging environment with
an appropriately configured service mesh will route sessions-service to internal-
staging-server-a/stage/sessions/v3.

Reliability
The ephemeral nature of modern computing and cluster environments brings chal‐
lenges related to reliability in addition to location changes. For example, every service
must correctly handle communication issues with another service it is interacting
with. You will learn more about “The 8 Fallacies of Distributed Computing” shortly,
but issues to be aware of in this context include a service’s connection being inter‐
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rupted, a service becoming temporarily unavailable, or a service responding slowly.
These challenges can be handled in code using well-known reliability patterns such
as retries, timeouts, circuit breakers, bulkheads, and fallbacks. Michael Nygard’s book
Release It! Design and Deploy Production-Ready Software, now in its second edition,
provides a comprehensive exploration and implementation guide. However, as you
will explore in more depth in “Supporting Cross-Functional Communication Across
Languages” on page 100, attempting to implement this functionality in code typically
leads to inconsistent behavior, especially across different languages and platforms.

As a service mesh is involved with initiating and managing every service-to-service
communication, it provides the perfect place to consistently implement these reliabil‐
ity patterns to provide fault-tolerance and graceful degradation. Depending on the
implementation, a service mesh can also detect issues and share this information
across the mesh, allowing each service within the mesh to make appropriate decisions
on how to route traffic—e.g., if a service’s response latency is increasing, all services
that call the target service can be instructed to instead initiate their fallback actions.

For the case study, a service mesh will enable you to define how to handle any failures
when communicating with the new Session service. Imagine several thousand attend‐
ees at an event having just watched the morning conference keynote and wanting to
view their schedule for the day. This sudden spike of traffic for the Session service
may result in degraded behavior. For the majority of use cases you would define
appropriate timeouts and retries, but you may also define a circuit-breaking action
that triggers an application behavior. For example, if an API call from the Attendee
service to the Session service to get an attendee’s daily session schedule repeatedly
fails, you may trigger a circuit breaker in the service mesh that rapidly fails all calls to
this service (to allow the service to recover). Most likely within the mobile application
you would handle this failure by “falling back” to rendering the entire conference
session schedule rather than a personal schedule.

Advanced traffic routing: Shaping, policing, splitting, and mirroring
Since the dot-com boom of the late ’90s, consumer web applications have increasingly
handled more users and more traffic. Users have also become more demanding, both
in regards to performance and features offered. Accordingly, the need to manage
traffic to meet the needs of security, performance, and feature release has become
more important. As you learned in “How Does an API Gateway Integrate with
Other Technologies at the Edge?” on page 60, the edge of the network saw the
emergence of dedicated appliances to meet these requirements, but this infrastructure
was not appropriate to deploy in front of every internal service. In this section of the
chapter you will learn more about the requirements that have become typical for a
microservices-based application in regards to internal traffic shaping and policing.
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Traffic shaping.    Traffic shaping is a bandwidth management technique that delays
some or all of the network traffic in order to match a desired traffic profile. Traffic
shaping is used to optimize or guarantee performance, improve latency, or increase
usable bandwidth for some kinds of traffic by delaying other kinds. The most com‐
mon type of traffic shaping is application-based traffic shaping, where fingerprinting
tools are first used to identify applications of interest, which are then subject to
shaping policies. With east–west traffic, a service mesh can generate or monitor the
fingerprints, such as service identity or some other proxy for this, or a request header
containing relevant metadata—for example, whether a request originated from a
conference application free-tier user or a paying customer.

Traffic policing.    Traffic policing is the process of monitoring network traffic for com‐
pliance with a traffic policy or contract and taking steps to enforce that contract.
Traffic violating a policy may be discarded immediately, marked as noncompliant,
or left as is, depending on administrative policy. This technique is useful to prevent
a malfunctioning internal service from committing a denial of service (DoS) attack,
or to prevent a critical or fragile internal resource from becoming overly saturated
with traffic (e.g., a data store). Before the advent of cloud technologies and service
meshes, traffic policing within internal networks was generally only implemented
within an enterprise context using specialized hardware or software appliances such
as an enterprise service bus (ESB). Cloud computing and software-defined networks
(SDNs) made traffic-policing techniques easier to adopt through the use of security
groups (SGs) and network access control lists (NACLs).

When managing east–west communications, services within the network or cluster
boundary may be aware of a traffic contract and may apply traffic shaping internally
in order to ensure their output stays within the contract. For example, your Attendee
service may implement an internal rate limiter that prevents excessive calls to the
Session service API within a specific time period.

Service mesh allows granular control of traffic shaping, splitting, and mirroring that
makes it possible to gradually shift or migrate traffic from one version of a target
service to another. In “Release Strategies” on page 131, we will look at how this
approach can be used to facilitate the separation of build and release for traffic-based
release strategies.

Provide Transparent Observability
When operating any distributed system like a microservices-based application, the
ability to observe both the end-user experience and arbitrary internal components
is vitally important for fault identification and debugging corresponding issues.
Historically, adopting system-wide monitoring required the integration of highly
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coupled runtime agents or libraries within applications, requiring a deployment of all
applications during the initial rollout and all future upgrades.

A service mesh can provide some of the observability required, particularly applica‐
tion (L7) and network (L4) metrics, and do so transparently. A corresponding update
of any telemetry collection components or the service mesh itself should not require a
redeployment of all applications. There are, of course, limitations to the observability
a service mesh can provide, and you should also instrument your services using
language-specific metrics and log-emitting libraries. For example, in our case study
the service mesh would provide metrics on the number, latency, and error rate of
Session service API calls, and you would also typically decide to log business-specific
metrics and KPIs of the API calls.

Enforce Security: Transport Security, Authentication,
and Authorization
In much the same way as observability, service-to-service communication security
has historically been implemented using language-specific libraries. These highly
coupled approaches provide the same drawbacks and nuances. For example, imple‐
menting transport-level encryption within an internal network is a relatively com‐
mon requirement, but different language libraries handle certificate management
differently, which increased the operational burden of deploying and rotating certifi‐
cates. Managing both service (machine) and user (human) identity for authentication
and authorization was also difficult across differing languages. It was also often
easy to accidentally (or deliberately) circumvent any security implementation by not
including the required libraries.

As a service mesh’s data plane is included within the path of any traffic within the
system, it is relatively trivial to enforce the required security profile. For example, the
service mesh data plane can manage service identities (for example, using SPIFFE)
and cryptographic certificates, enabling mTLS, and service-level authentication and
authorization. This enables us to easily implement mTLS within our case study
without the need for code modifications.

Supporting Cross-Functional Communication Across Languages
As you create or extract services within a microservice-based application and move
from in-process to out-of-process communication, you need to think about changes
in routing, reliability, observability, and security. The functionality required to handle
this can be implemented within application code, for example, as a library. However,
if your application or system uses multiple programming languages—and a polyglot
approach is quite common with microservice-based systems—this means that you
will have to implement each library for each language used. As a service mesh is
typically implemented using the sidecar pattern, where all service communication is
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routed through a network proxy external to the service but running within the same
network namespace, the functionality required can be implemented once within the
proxy and reused across all the services. You can think of this as “infrastructure
dependency injection.” Within our case study this would enable us to rewrite our
Attendee service using a different language (perhaps to meet new performance
requirements) and still rely on the cross-functional aspects of service-to-service com‐
munication being handled consistently.

Separating Ingress and Service-to-Service Traffic Management
Recall in “Case Study: An Evolutionary Step” on page xxx that we briefly introduced
the key concepts of north–south and east–west traffic. Generally speaking, north–
south traffic is traffic that is ingressing from an external location into your system.
East–west traffic is transiting internally from system-to-system or service-to-service.
The definitions can become tricky when you look further into the definition of “your
systems”; for example, does this definition extend to systems designed and operated
by only your team, your department, your organization, or your trusted third-parties,
etc.

Several contributors to the API space, including Marco Palladino from Kong, have
argued that the use of north–south and east–west is largely irrelevant and is more
of a hangup from the previous generation of computer networking when bound‐
aries between systems were clearer. We’ll explore this argument in more detail in
Chapter 9, as this touches the idea of API as a product (including API lifecycle
management) and layer 7 and layer 4 service connectivity (from the OSI model of
networking.) The differences between the core properties and features of ingress and
service-to-service traffic are shown in Table 4-3.

Table 4-3. Differences between ingress and service-to-service properties

Ingress (n/s) Service-to-service (e/w)
Traffic source External (user, third-party, internet) Internal (within trust boundary)

Traffic destination Public or business-facing API, or
website

Service or domain API

Authentication “user” (real world entity) focused “service” (machine entity) and “user”
(real-world entity) focused

Authorization “user” roles or capability level “service” identity or network segment
focused, and “user” roles or capability
level

TLS One-way, often enforced (e.g.,
protocol upgrade)

Mutual, can be made mandatory (strict
mTLS)

Primary implementations API gateway, reverse proxy Service mesh, application libraries

Primary owner Gateway/networking/ops team Platform/cluster/ops team

Organizational users Architects, API managers, developers Developers
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4 You should note that the Finagle RPC framework and Netflix OSS libraries are now both deprecated and not
recommended for use in modern production systems.

As illustrated, the properties and associated requirements for managing the two
traffic types are often quite different. For example, handling external end-user traffic
destined for a product API has fundamentally different requirements in comparison
with handling internal service-to-service traffic destined for an internal business,
domain, or component API. In practice this means that the control planes for both
an API gateway and service mesh must offer different capabilities in order to support
the configuration of the respective data planes. As an example in our case study,
the Session service development team may want to specify that the service can only
be called by the legacy conference application and Attendee service, whereas the
Attendee service team would not typically specify which external systems can or
cannot call the public API—this would be the responsibility of the associated gateway
or networking team.

This difference between managing ingress and service-to-service API calls can be
better understood if you compare the evolution and usage of API gateway technology,
as explored in “A Modern History of API Gateways” on page 68, with the evolution of
service mesh technology, as described in the following section.

Evolution of Service Mesh
Although the term “service mesh” was coined in 2016, several of the early “unicorn”
organizations like Twitter, Netflix, Google, and Amazon were creating and using
related technologies within their internal platforms from the late 2000s and early
2010s. For example, Twitter created its Scala-based Finagle RPC framework, which
was open sourced in 2011. Netflix created and released its “OSS” Java-based micro‐
service shared libraries in 2012, including Ribbon, Eureka, and Hystrix.4 Later the
Netflix team released the Prana sidecar to enable non-JVM-based services to take
advantage of these libraries. The creation of the Finagle libraries and adoption of
sidecars ultimately spawned Linkerd, arguably the first sidecar-based service mesh
and also an initial project in the CNCF when this foundation was formed. Google
quickly followed suit by releasing the Istio service mesh that built upon the Envoy
Proxy project that had emerged from the Lyft Engineering team.

In a turn that looks like the industry coming full circle, service mesh capabilities are
getting pushed back into shared libraries, as we’re seeing with gRPC, or added to the
OS kernel. This evolution can be seen in Figure 4-5. Although the development and
usage of many of these earlier components and platforms are now deprecated, it is
useful to take a quick tour of their evolution as this highlights several challenges and
limitations of using the service mesh pattern, some of which still remain.
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Figure 4-5. Evolution of service mesh technology

Early History and Motivations
In the ’90s, Peter Deutsch and others at Sun Microsystems compiled “The 8 Fallacies
of Distributed Computing”, in which they list assumptions that engineers tend to
make when working with distributed systems. They made the point that although
these assumptions might have been true in more primitive networking architectures
or the theoretical models, they don’t hold true in the modern networks:

• The network is reliable•
• Latency is zero•
• Bandwidth is infinite•
• The network is secure•
• Topology doesn’t change•
• There is one administrator•
• Transport cost is zero•
• The network is homogeneous•

Peter and team state that these fallacies “all prove to be false in the long run and
all cause big trouble and painful learning experiences.” Engineers cannot just ignore
these issues; they have to explicitly deal with them.
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5 You can learn more via these websites for Fowler’s “Microservice Prerequisites”, “Calçado’s Microservices
Prerequisites”, and Phil’s blog “Pattern: Service Mesh”.

Ignore the Fallacies of Distributed Computing at Your Peril!

Because the “8 Fallacies of Distributing Computing” were coined in
the ’90s, it is tempting to think of them as a computing relic. How‐
ever, this would be a mistake! Much like many of the other timeless
computing laws and patterns derived in the ’70s and ’80s, the issues
remain the same, even as the technology changes. When working
in the architect role, you must constantly remind your teams that
many networking challenges captured within these fallacies hold
true today, and you must design systems accordingly!

As distributed systems and microservice architectures became popular in the 2010s,
many innovators in the space, such as James Lewis, Sam Newman, and Phil Calçado,
realized the importance of building systems that acknowledged and offset these falla‐
cies over and above functionality provided in standard networking stacks. Building
on Martin Fowler’s initial set of “Microservice Prerequisites,” Phil created “Calçado’s
Microservices Prerequisites” and included “standardized RPC” as a key prerequisite
that encapsulated many of the practical lessons he had learned from the fallacies of
distributed computing. In his later 2017 blog post, Phil stated that “while the TCP/IP
stack and general networking model developed many decades ago is still a powerful
tool in making computers talk to each other, the more sophisticated [microservice-
based] architectures introduced another layer of requirements that, once more, have
to be fulfilled by engineers working in such architectures.”5

Implementation Patterns
Although the most widely deployed implementation of service meshes today utilize
the proxy-based “sidecar” model of deployment, this was not always the case. And
it may not be the case in the future. In this section of the chapter you will learn
how service mesh implementation patterns have so far evolved and explore what the
future may hold.

Libraries
Although many technical leaders realized the need for a new layer of networking
functionality within microservice-based systems, they understood that implementing
these technologies would be nontrivial. They also recognized that a lot of effort
would be repeated, both within and across organizations. This led to the emergence
of microservice-focused networking frameworks and shared libraries that could be
built once and reused, first across an organization, and later open sourced for
wider consumption.

104 | Chapter 4: Service Mesh: Service-to-Service Traffic Management

https://oreil.ly/GlYvp
https://oreil.ly/d4lEh
https://oreil.ly/d4lEh
https://oreil.ly/h45Te


In his aforementioned blog post, Phil Calçado commented that even core networking
functionality such as service discovery and circuit breaking was challenging to imple‐
ment correctly. This led to the creation of large, sophisticated libraries like Twitter’s
Finagle and the Netflix OSS stack. These became very popular as a means to avoid
rewriting the same logic in every service and also as projects to focus shared efforts
on ensuring correctness. Some smaller organizations took on the burden themselves
of writing the required networking libraries and tools, but the cost was typically high,
especially in the long term. Sometimes this cost was explicit and clearly visible—for
example, the cost of engineers assigned to teams dedicated to building tooling. But
more often the true expense was difficult to fully quantify as it manifests itself as
time taken for new developers to learn proprietary solutions, resources required
for operational maintenance, or other forms of taking time and energy away from
working on your customer-facing products.

Phil also observed that the use of libraries that expose functionality via language
bindings or an SDK limited the tools, runtimes, and languages you can use for your
microservices. Libraries for microservices are often written for a specific platform,
be it a programming language or a runtime like the JVM. If you use platforms other
than the one supported by the library, you will most likely need to port the code
to the new platform itself, with your costs increasing in relation to the number of
languages.

Service Mesh Libraries and the Price of Polyglot

Many organizations embrace a polyglot approach to coding appli‐
cations and use a variety of languages, choosing the most appro‐
priate one for a service in order to accomplish the requirements.
For example, using Java for long-running business services, Go
for infrastructure services, and Python for data science work. If
you embrace the library-based approach to implementing a service
mesh, you will need to be aware that you will have to build, main‐
tain, and upgrade all of your libraries in lock-step in order to avoid
compatibility issues or provide a suboptimal developer experience
for some languages. You may also find subtle differences between
implementations across language platforms, or bugs that only affect
a specific runtime.

Sidecars
In the early 2010s, many engineers were embracing the approach to polyglot pro‐
gramming, and it was not uncommon for a single organization to have services
written in multiple languages that were deployed to production. The desire to write
or maintain one library that handled all of the required networking abstractions led
to the creation of libraries that ran externally to a service as standalone processes. The
microservice “sidecar” was born. In 2013, Airbnb wrote about “Synapse and Nerve,”
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its open source implementation of a service discovery sidecar. One year later, Netflix
introduced Prana, a sidecar that exposed an HTTP interface for non-JVM applica‐
tions to integrate with the rest of the Netflix OSS ecosystem for service discovery,
circuit breaking, and more. The core concept here was that a service did not connect
directly to its downstream dependencies, but instead all of the traffic went through
the Prana sidecar that transparently added the desired networking abstraction and
features.

As the use of the microservices architecture style increased, we saw the rise of a
new wave of proxies that were flexible enough to adapt to different infrastructure
components and communication requirements. The first widely known system on
this space was Linkerd, created by Buoyant and based on its engineering experience
of having worked on Twitter’s microservices platform. Soon after, the engineering
team at Lyft announced Envoy Proxy, which followed a similar principle and was
quickly adopted by Google in its Istio service mesh. When using the sidecar pattern,
each of your services will have a companion proxy process that runs standalone
next to your application. This sidecar typically shares the same process, file, and
networking namespace, and specific security guarantees are provided (e.g., that any
communication with the “local” network is isolated from the external network).
Given that services communicate with each other only through the sidecar proxy, we
end up with a deployment similar to the diagram in Figure 4-6.

Figure 4-6. Service mesh proxies forming a higher-level networking abstraction

As noted by the likes of Phil Calçado and Buoyant’s William Morgan, the most
powerful aspect of this integration of sidecar proxies is that it moves you away from
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thinking of proxies as isolated components and toward acknowledging the network
they form as something valuable in itself.

In the mid-2010s, organizations began to move their microservices deployments to
more sophisticated runtimes such as Apache Mesos (with Marathon), Docker Swarm,
and Kubernetes, and organizations started using the tools made available by these
platforms to implement a service mesh. This led to a move away from using a set
of independent proxies working in isolation as we saw with the likes of Synapse and
Nerve, toward the use of a centralized control plane. If you look at this deployment
pattern using a top-down view, you can see that the service traffic still flows from
proxy to proxy directly, but the control plane knows about and can influence each
proxy instance. The control plane enables the proxies to implement features such
as access control and metrics collection that require cooperation and coordination
across services, as shown in Figure 4-7.

Figure 4-7. Controlling and coordinating a service mesh data plane

The sidecar-based approach is the most common pattern in use today and likely
a good choice for our conference system. The primary costs of deploying a sidecar-
based service mesh is in relation to the initial installation and ongoing operational
maintenance and also the resources required to run all of the sidecars—as our
scalability needs are currently modest, we shouldn’t require large amounts of comput‐
ing power to run the sidecar proxies.
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6 You can learn more about Traffic Director and the Envoy Proxy–inspired xDS protocol via their respective
documentation websites.

The Cost of Running Sidecars at Scale

Many of today’s popular service mesh solutions require you to add
and run a proxy sidecar container, such as Envoy, Linkerd-proxy,
or NGINX, to every service or application running within your
cluster. Even in a relatively small environment with, say, 20 serv‐
ices, each running five pods spread across three nodes, you will
have 100 proxy containers running. However small and efficient
the proxy implementation is, the sheer duplication of the proxies
will impact resources.
Depending on the service mesh configuration, the amount of
memory used by each proxy may increase in relation to the num‐
ber of services that it needs to be able to communicate with. Pranay
Singhal wrote about his experiences configuring Istio to reduce
consumption from around 1 GB per proxy to a much more rea‐
sonable 60–70 MB each. However, even in the small, imaginary
environment with 100 proxies on three nodes, this optimized con‐
figuration still requires approximately 2 GB per node.

Proxyless gRPC libraries
In an evolution that appears we may have come full circle, the Google Cloud began
promoting “proxyless gPRC” in early 2021, where the networking abstractions are
once again moved back into a language-specific library (albeit a library maintained
by Google and a large OSS community). These gRPC libraries are included within
each service and act as the data plane within the service mesh. The libraries require
access to an external control plane for coordination, such as the Google Traffic
Director service. Traffic Director uses open source “xDS APIs” to configure the gRPC
libraries within the applications directly.6 These gRPC applications act as xDS clients,
connecting to Traffic Director’s global control plane that enables global routing, load
balancing, and regional failover for service mesh and load-balancing use cases. Traffic
Director even supports a “hybrid” mode of operation, including deployments that
incorporate both sidecar proxy-based services and proxyless services, as shown in
Figure 4-8.
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Figure 4-8. Example network diagram of services using both sidecars and proxyless
communication

As our conference system uses REST APIs in addition to gRPC APIs, this would cur‐
rently exclude this choice of a service mesh implementation. If our use of REST APIs
internally was deprecated, or the gRPC libraries are enhanced to provide support for
non-gRPC-based communication, using this approach could be reevaluated.

Is the Future of Service Mesh Proxyless?
As the popular cliché goes, although history doesn’t repeat itself, it often rhymes.
Many of the benefits and limitations of the proxyless approach are similar to those
when using language-specific libraries. The Google Cloud team has called out the
following use cases as examples on when proxyless deployment of service could be
beneficial:

• Resource efficiency in a large-scale service mesh: saving resources from not•
running additional sidecar processes

• High-performance gRPC applications: reducing networking hops and latency•
• Service mesh for environments where you can’t deploy sidecar proxies: for exam‐•

ple, a second process can’t be executed, or a sidecar can’t manipulate the required
networking stack

• Migrate from a service mesh with proxies to a mesh without proxies•
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7 Learn more about this in “How eBPF will solve Service Mesh—Goodbye Sidecars”.

Sidecarless: Operating system kernel (eBPF) implementations
Another emerging alternative service mesh implementation is based on pushing the
required networking abstractions back into the operation system (OS) kernel itself.
This has become possible thanks to the rise and wide adoption of eBPF, a kernel
technology that allows custom programs to run sandboxed within the kernel. eBPF
programs are run in response to OS-level events, of which there are thousands that
can be attached to. These events include the entry to or exit from any function
in kernel or user space, or “trace points” and “probe points,” and—importantly for
service mesh—the arrival of network packets. As there is only one kernel per node,
all the containers and processes running on a node share the same kernel. If you add
an eBPF program to an event in the kernel, it will be triggered regardless of which
process caused that event, whether it’s running in an application container or directly
on the host. This should remove any potential attempts to circumvent the service
mesh, accidentally or otherwise.

The eBPF-based Cilium project provides the capabilities to secure and observe net‐
work connectivity between container workloads. Cilium brings this “sidecarless”
model to the world of service mesh. Use of Cilium can reduce latency between
service calls, as some functionality can be provided by the kernel without the need
to perform a network hop to a sidecar proxy.7 As well as the conventional sidecar
model, Cilium supports running a service mesh data plane using a single Envoy
Proxy instance per node, reducing resource usage. Figure 4-9 shows how two services
can communicate using Cilium and a single Envoy Proxy per node.

Figure 4-9. Using Cilium, eBPF, and a single Envoy Proxy per node to implement service
mesh functionality
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Service Mesh Taxonomy
Table 4-4 highlights the difference between the three service mesh implementation
styles as discussed in the previous section.

Table 4-4. Comparison of library-, proxy-, and OS/kernel-based service meshes

Use case Library-based (and
“proxyless”)

Sidecars, Proxy-based OS/kernel-based

Language/platform support Single-language libraries,
platform agnostic

Language agnostic, wide
platform support

Language agnostic, OS-
level support

Runtime mechanism Packaged and run within
the application

Run alongside application in
a separate process

Run as part of the OS
kernel, with full access to
user and kernel space

Upgrading service mesh
components

Requires rebuild and
redeployment of entire
application

Requires redeployment of
sidecar components (can
often be zero-downtime)

Requires kernel program
update/patching

Observability Complete insight into
application and traffic,
with ability to propagate
context easily

Insight into traffic
only, propagating context
requires language support
or shim

Insight into traffic
only, propagating context
requires language support
or shim

Security threat model Library code runs as part of
application

Sidecars typically share
process and network
namespace with application

Application interacts
directly with OS via
syscalls

Case Study: Using a Service Mesh for Routing,
Observability, and Security
In this section of the chapter you will explore several concrete examples of how to
use a service mesh to implement the common requirements of routing, observing,
and securely segmenting (via authorization) your service-to-service traffic. All of
these examples will use Kubernetes, as this is the most common platform on which
service meshes are deployed, but the concepts demonstrated apply to all platforms
and infrastructure for which each service mesh supports. Although we recommend
choosing and adopting only one service mesh implementation within your applica‐
tion’s technology stack, we’ll demonstrate the configuration of the conference system
using three different service meshes, purely for educational purposes.
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8 You can learn more about VirtualServices and DestinationRules via the Istio docs.

Routing with Istio
Istio can be installed into your Kubernetes cluster with the istioctl tool. The main
prerequisite for using Istio is enabling the automatic injection of the proxy sidecars to
all services that are running within your cluster. This can be done as follows:

$ kubectl label namespace default istio-injection=enabled

With the auto-injection configured, the two primary Custom Resources you will be
working with are VirtualServices and DestinationRules.8 A VirtualService defines a
set of traffic routing rules to apply when a host is addressed—e.g., http://sessions. A
DestinationRule defines policies that apply to traffic intended for a service after rout‐
ing has occurred. These rules specify configuration for load balancing, connection
pool size from the sidecar, and outlier detection settings to detect and evict unhealthy
hosts from the load balancing pool.

For example, to enable routing to your Session and Attendee services within the case
study, you can create the following VirtualServices:

---
apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
  name: sessions
spec:
  hosts:
  - sessions
  http:
  - route:
    - destination:
        host: sessions
        subset: v1
---
apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
  name: attendees
spec:
  hosts:
  - attendees
  http:
  - route:
    - destination:
        host: attendees
        subset: v1
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The following DestinationRules can also be created. Note how the attendees Destina‐
tionRule specifies two versions of the service; this is the foundation for enabling
canary routing for the new v2 version of the service:

---
apiVersion: networking.istio.io/v1alpha3
kind: DestinationRule
metadata:
  name: sessions
spec:
  host: sessions
  subsets:
  - name: v1
    labels:
      version: v1
---
apiVersion: networking.istio.io/v1alpha3
kind: DestinationRule
metadata:
  name: attendees
spec:
  host: attendees
  subsets:
  - name: v1
    labels:
      version: v1
  - name: v2
    labels:
      version: v2

With Istio installed and the preceding VirtualServices and DestinationRules config‐
ured, you can begin routing traffic and API calls between the Attendee and Session
services. It really is this easy to get started, although configuring and maintaining
Istio in a production environment can be more involved. Istio will handle the rout‐
ing and also generate telemetry related to each connection. Let’s learn more about
observability using the Linkerd service mesh.

Observing Traffic with Linkerd
You can install Linkerd into a Kubernetes cluster by following the “Getting Started”
instructions. Linkerd’s telemetry and monitoring features are enabled automatically,
without requiring you to make any configuration changes to the default installation.
These observability features include:

• Recording of top-line (“golden”) metrics (request volume, success rate, and•
latency distributions) for HTTP, HTTP/2, and gRPC traffic

• Recording of TCP-level metrics (bytes in/out, etc.) for other TCP traffic•
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• Reporting metrics per service, per caller/callee pair, or per route/path (with•
Service Profiles)

• Generating topology graphs that display the runtime relationship between•
services

• Live, on-demand request sampling•

You can consume this data in several ways:

• Through the Linkerd CLI, e.g., with linkerd viz stat and linkerd viz routes•
• Through the Linkerd dashboard and prebuilt Grafana dashboards•
• Directly from Linkerd’s built-in Prometheus instance•

To gain access to Linkerd’s observability features, you only need to install the viz
extension and open the dashboard using your local browser:

linkerd viz install | kubectl apply -f -
linkerd viz dashboard

This provides access to service graphs showing traffic flow. In Figure 4-10, you can
see traffic flowing across the mesh from the webapp to the book and authors services.

Figure 4-10. Using Linkerd viz to observe traffic flow between services

You can also view the top-line traffic metrics using the prebuilt Grafana dashboards,
as shown in Figure 4-11.
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Figure 4-11. Viewing the Linkerd viz Grafana dashboards

Using a service mesh to provide observability into your applications is useful during
both development and production. Although you should always automate detection
of invalid service-to-service traffic in production, you can also use this service mesh
observability tooling to identify when internal APIs or services are being called
incorrectly. Let’s now explore using policy to specify exactly which services can
communicate with each other in the service mesh using HashiCorp’s Consul.

Network Segmentation with Consul
You can install and configure Consul as a service mesh within a Kubernetes cluster
by following the “Getting Started with Consul Service Mesh for Kubernetes” guide.
Before microservices, authorization of interservice communication was primarily
enforced using firewall rules and routing tables. Consul simplifies the management of
interservice authorization with intentions that allow you to define service-to-service
communication permissions by service name.

Intentions control which services can communicate with each other and are enforced
by the sidecar proxy on inbound connections. The identity of the inbound service
is verified by its TLS client certificate, and Consul provides each service with an
identity encoded as a TLS certificate. This certificate is used to establish and accept
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9 The identity is encoded in the TLS certificate in compliance with the SPIFFE X.509 Identity Document, which
enables Connect services to establish and accept connections with other SPIFFE-compliant systems.

connections to and from other services.9 The sidecar proxy then checks if an inten‐
tion exists that authorizes the inbound service to communicate with the destination
service. If the inbound service is not authorized, the connection will be terminated.

An intention has four parts:

Source service
Specifies the service that initiates the communication. It can be the full name of a
service or be “*” to refer to all services.

Destination service
Specifies the service that receives the communication. This will be the “upstream”
(service) you configured in your service definition. It can be the full name of a
service or also be “*” to refer to all services.

Permission
Defines whether the communication between source and destination is permit‐
ted. This can be set to either allow or deny.

Description
Optional metadata field to associate a description with an intention.

The first intention you will create changes the “allow all” policy, where all traffic is
allowed unless denied in specific rules, to a “deny all” policy where all traffic is denied
and only specific connections are enabled:

apiVersion: consul.hashicorp.com/v1alpha1
kind: ServiceIntentions
metadata:
  name: deny-all
spec:
  destination:
    name: '*'
  sources:
    - name: '*'
      action: deny

By specifying the wildcard character (*) in the destination field, this intention will
prevent all service-to-service communication. Once you have defined the default
policy as deny all, you can authorize traffic between the conference system legacy
service, the Attendee service, and the Session service by defining a ServiceIntentions
CRD for each required service interaction. For example:

---
apiVersion: consul.hashicorp.com/v1alpha1
kind: ServiceIntentions
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metadata:
  name: legacy-app-to-attendee
spec:
  destination:
    name: attendee
  sources:
    - name: legacy-conf-app
      action: allow
---
apiVersion: consul.hashicorp.com/v1alpha1
kind: ServiceIntentions
metadata:
  name: legacy-app-to-sessions
spec:
  destination:
    name: sessions
  sources:
    - name: legacy-conf-app
      action: allow
---
apiVersion: consul.hashicorp.com/v1alpha1
kind: ServiceIntentions
metadata:
  name: attendee-to-sessions
spec:
  destination:
    name: sessions
  sources:
    - name: attendee
      action: allow
---
apiVersion: consul.hashicorp.com/v1alpha1
kind: ServiceIntentions
metadata:
  name: sessions-to-attendee
spec:
  destination:
    name: attendee
  sources:
    - name: sessions
      action: allow

Applying this configuration to the Kubernetes cluster will enable these interactions—
and only these service-to-service interactions—to process as required. Any other
interactions will be prevented, and the API call or request will be dropped.

In addition to Consul’s intentions, the Open Policy Agent (OPA) project is a popular
choice for implementing similar functionality within a service mesh. You can find an
example of using OPA to configure service-to-service policy within Istio in the “OPA
Tutorial documentation”.
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Now that you have explored example configuration that will be applied as we evolve
the conference system, let’s turn our attention to running and managing the service
mesh implementation itself.

Deploying a Service Mesh: Understanding and
Managing Failure
Regardless of the deployment pattern and number of instances running within a
system or network, a service mesh is typically on the critical path of many, if not
all, user requests moving through your system. An outage of a service mesh instance
within a cluster or network typically results in the unavailability of the entire system
within that network’s blast radius. For this reason the topics of understanding and
managing failure are vitally important to learn.

Service Mesh as a Single Point of Failure
A service mesh is often on the hot path of all traffic, which can be a challenge in
relation to reliability and failover. Obviously, the more functionality you are relying
on within the service mesh, the bigger the risk involved and the bigger the impact of
an outage. As a service mesh is often used to orchestrate the release of application
services, the configuration is also continually being updated. It is critical to be able to
detect and resolve issues and mitigate any risks. Many of the points discussed in “API
Gateway as a Single Point of Failure” on page 79 can be applied to understanding and
managing service mesh failure.

Common Service Mesh Implementation Challenges
As service mesh technologies are newer in comparison with API gateway technolo‐
gies, some of the common implementation challenges are yet to be discovered and
shared widely. However, there are a core set of antipatterns to avoid.

Service Mesh as ESB
With the emergence of service mesh plug-ins or traffic filters, and supporting
technologies like Web Assembly (Wasm), it is increasingly tempting to think of
service meshes as offering ESB-like functionality, such as payload transformation and
translation. For all the reasons already discussed throughout this book, we strongly
discourage adding business functionality or coupling too many “smarts” with the
platform or infrastructure.

118 | Chapter 4: Service Mesh: Service-to-Service Traffic Management



Service Mesh as Gateway
As many service mesh implementations provide some form of ingress gateway, we
have seen organizations wanting to adopt an API gateway but instead choosing to
deploy a service mesh and only using the gateway functionality. The motivation
makes sense, as engineers in the organization realize that they will soon want to adopt
service mesh–like functionality, but their biggest pain point is managing ingress
traffic. However, the functionality provided by most service mesh gateways is not
as rich in comparison with a fully fledged API gateway. You will also most likely
encounter the installation and operational costs of running a service mesh without
getting any of the benefits.

Too Many Networking Layers
We have seen some organizations provide a rich set of networking abstractions and
features that will meet the current service-to-service communication requirements,
but the development teams either don’t know about this or refuse to adopt this for
some reason. As development teams attempt to implement a service mesh on top
of the existing networking technologies, additional issues appear, such as incompati‐
bilities (e.g., existing networking technologies stripping headers), increased latency
(owing to multiple proxy hops), or functionality being implemented multiple times
within the networking stack (e.g., circuit breaking occurring in both the service mesh
and the lower-level networking stack). For this reason, we always recommend that all
involved teams coordinate and collaborate with service mesh solutions.

Selecting a Service Mesh
Now that you learned about the functionality provided by a service mesh, the evolu‐
tion of the pattern and technologies, and how a service mesh fits into to the overall
system architecture, next is a key question: how do you select a service mesh to be
included in your application’s technology stack?

Identifying Requirements
As discussed in relation to selecting an API gateway, one of the most important steps
with any new infrastructure project is identifying the related requirements. This may
appear obvious, but I’m sure you can recall a time that you were distracted by shiny
technology, magical marketing, or good sales documentation!

You can look back to the earlier section “Why Use a Service Mesh?” on page 96
of this chapter to explore in more detail the high-level requirements you should be
considering during a service mesh selection process. It is important to ask questions
that are both focused on current pain points and also your future roadmap.
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Build Versus Buy
In comparison with the API gateway build versus buy decision, the related discus‐
sions with service mesh are less likely to be had upfront, especially with organizations
that have heritage or legacy systems. This can partially be attributed to service
mesh being a relatively new category of technology. In our experience, in most
vintage systems that are somewhat distributed (e.g., more than a LAMP stack), partial
implementations of a service mesh will be scattered throughout an organization—for
example, with some departments using language-specific libraries, others using an
ESB, and some using simple API gateways or simple proxies to manage internal
traffic.

In general, if you have decided to adopt the service mesh pattern, we believe that
it is typically best to adopt and standardize on an open source implementation or
commercial solution rather than build your own. Presenting the case for build versus
buy with software delivery technology could take an entire book, and so in this
section we only want to highlight some common challenges:

Underestimating the total cost of ownership (TCO)
Many engineers discount the cost of engineering a solution, the continued main‐
tenance costs, and the ongoing operational costs.

Not thinking about opportunity cost
Unless you are a cloud or platform vendor, it is highly unlikely that a custom
service mesh will provide you with a competitive advantage. You can instead
deliver more value to your customers by building functionality aligned to your
core value proposition.

Operational costs
Not understanding the onboarding and operational cost of maintaining multiple
different implementations that solve the same problems.

Awareness of technical solutions
Both the open source and commercial platform component space move fast, and
it can be challenging to keep up-to-date. Staying aware and informed, however, is
a core part of the role of being a technical leader.

Checklist: Selecting a Service Mesh
The checklist in Table 4-5 highlights the key decisions that you and your team should
be considering when deciding whether to implement the service mesh pattern and
when choosing the related technologies.
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Table 4-5. ADR Guideline: Selecting a service mesh checklist
Decision How should we approach selecting a service mesh for our organization?

Discussion Points Have we identified and prioritized all of our requirements associated with selecting a service mesh?
Have we identified current technology solutions that have been deployed in this space within the
organization?
Do we know all of our team and organizational constraints?
Have we explored our future roadmap in relation to this decision?
Have we honestly calculated the “build versus buy” costs?
Have we explored the current technology landscape and are we aware of all of the available solutions?
Have we consulted and informed all involved stakeholders in our analysis and decision making?

Recommendations Focus particularly on your requirement to reduce internal API/system coupling, simplify consumption,
protect APIs from overuse and abuse, understand how APIs are being consumed, and manage APIs as
products.
Key questions to ask include: is there an existing service mesh in use? Has a collection of technologies
been assembled to provide similar functionality; e.g., have developers created service-to-service
communication libraries or have platform/SREs team deployed sidecar proxies?
Focus on technology skill levels within your team, availability of people to work on a service mesh
project, and available resources and budget, etc.
It is important to identify all planned changes, new features, and current goals that could impact internal
traffic management and the other functionality that a service mesh provides.
Calculate the total cost of ownership (TCO) of all of the current service meshlike implementations and
potential future solutions.
Consult with well-known analysts, trend reports, and product reviews in order to understand all of the
current solutions available.
Selecting and deploying a service mesh will impact many teams and individuals. Be sure to consult with
development teams, QA, the architecture review board, the platform team, InfoSec, etc.

Summary
In this chapter you have learned what a service mesh is and explored what func‐
tionality, benefits, and challenges adopting this pattern and associated technologies
provides:

• Fundamentally, “service mesh” is a pattern for managing all service-to-service•
communication within a distributed software system.

• At a network level, a service mesh proxy acts as a full proxy, accepting all•
inbound traffic from other services and also initiating all outbound requests to
other services.

• A service mesh is deployed within an internal network or cluster. Large systems•
or networks are typically managed by deploying several instances of a service
mesh, often with each single mesh spanning a network segment or business
domain.
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• A service mesh may expose endpoints within a network demilitarized zone•
(DMZ), or to external systems, or additional networks or clusters, but this is
frequently implemented by using an “ingress,” “terminating,” or “transit” gateway.

• There are many API-related cross-cutting concerns that you might have for•
each or all of your internal services, including: product lifecycle management
(incrementally releasing new versions of a service), reliability, multilanguage
communication support, observability, security, maintainability, and extensibility.
A service mesh can help with all of these.

• A service mesh can be implemented using language-specific libraries, sidecar•
proxies, proxyless communication frameworks (gRPC), or kernel-based technol‐
ogies like eBPF.

• The most vulnerable component of a service mesh is typically the control plane.•
This must be secured, monitored, and run as a highly available service.

• Service mesh usage antipatterns include: service mesh as ESB, service mesh as•
gateway, and using too many networking layers.

• Choosing to implement a service mesh, and selecting the technology to do so, are•
Type 1 decisions. Research, requirements analysis, and appropriate design must
be conducted.

• If you have decided to adopt the service mesh pattern we believe that it is•
typically best to adopt and standardize on an open source implementation or
commercial solution rather than build your own.

Regardless of your decision to adopt a service mesh, it is important to consider both
external and internal operations and security for your APIs. This is the focus of the
next section of this book.
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PART III

API Operations and Security

In this section you will explore the challenges in operating and securing an API-
driven system.

Chapter 5 covers deploying and releasing APIs using an API lifecycle. We will also
explore observability topics and how opinionated platforms can help reduce prob‐
lems with distributed architectures.

Chapter 6 explores threat modeling for APIs and how to think like someone attempt‐
ing to act maliciously against your APIs.

Chapter 7 examines the use of authentication and authorization for securing APIs.





CHAPTER 5

Deploying and Releasing APIs

In this chapter we will start to tie together how to move from design, build, and test
to running in the target environment.

Consider the conference system case study we introduced in the Introduction: we
had a single-user interface and server-side application. Deploying an upgrade to the
server or user interface would likely mean having some element of downtime. It is
likely that the deployment and the release actions are tightly coupled and possibly
inseparable. It may also have taken time to roll back the changes if an issue occurred
with the deployment. We will explore some options for the legacy conference system,
in addition to looking at how a looser coupling between the UI and server compo‐
nents provides more options for deployment and release.

The introduction of traffic management provides you options to separate the deploy‐
ment and release. In this chapter we will explore this in more detail and look at the
conference system options available for rolling out changes. You will need to consider
how API versioning impacts the options for modeling releases in the conference
system.

One key consideration for a rollout is to understand whether a change has been
successful or not. API architectures are by nature decoupled, and it is important to
ensure the right metrics, logs, and traces are available to perform a successful release.
We will look at the types of considerations for metrics and how they help in releases
and incident management/troubleshooting.

Finally, we will touch on how eventual consistency impacts change and where
gotchas can creep in at the application level. The introduction of additional layers
of infrastructure, such as proxies, requires decisions around caching and header
propagation. We will explore these considerations and why you might choose an
opinionated platform.
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Separating Deployment and Release
It’s important for you to understand the difference between deployment and release
to get the most out of this chapter. Deployment involves taking a feature all the
way into production, because you now have a running process in your system.
Although deployed, the new feature is not active or executed by interactions with
the production system. There are different ways to achieve this separation and
you will explore these shortly. The release involves activating the new feature in a
controlled manner, allowing you to control the risk of introducing the new feature.
Thoughtworks Technology Radar has a great explanation of the difference between
deployment and release:

Implementing Continuous Delivery continues to be a challenge for many organiza‐
tions, and it remains important to highlight useful techniques such as decoupling
deployment from release. We recommend strictly using the term Deployment when
referring to the act of deploying a change to application components or infrastructure.
The term Release should be used when a feature change is released to end users, with
a business impact. Using techniques such as feature toggles and dark launches, we
can deploy changes to production systems more frequently without releasing features.
More-frequent deployments reduce the risk associated with change, while business
stakeholders retain control over when features are released to end users.

—Thoughtworks Technology Radar 2016

One advantage of moving toward an API-based architecture is that the decoupled
nature enables teams to rapidly release change. To realize this benefit, it is important
to consider that the mechanisms for ensuring the coupling between systems remains
low and the risk of releases resulting in a failure is minimized.

We have seen teams that move to an API-based architecture
without separating deployment and release. This can work for
highly coupled services, but quickly puts pressure and downtime
on multiple services if releases have to be choreographed across
many teams. We will explore further in this chapter how you can
use API versioning and lifecycles to help prevent this.

Case Study: Feature Flagging
To effectively consider how to separate deployment and release, we will start with
the legacy conference system case study. This is a useful place to start as it will allow
us to model an evolutionary architecture nicely, where we can control the rate of
change to the new infrastructure we have presented so far in the book. Figure 5-1
shows how the the legacy system for attendees and the database will live side-by-side
with the modernized API-based service. Using feature flags, the controller can now
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make a code-level decision about whether to execute the query against the internal or
external API service.

Figure 5-1. Conference application container diagram for attendees and feature flags

Feature flags are typically hosted in a configuration store outside of the running
application and allow code to be deployed with the feature off. Once the team (or
product owner) is ready to enable the feature, they can toggle the feature on, which
causes the application to execute a different branch of code. The granularity could
be on a per-user level, or more coarse, as simply enabling a specific option globally.
The following is example pseudocode from the popular Java feature-flagging tool
LaunchDarkly, where the user’s details are in the modern store:

LDUser user = new LDUser("jim@masteringapi.com");
boolean newAttendeesService =
    launchDarklyClient.boolVariation("user.enabled.modern", user, false);
if (newAttendeesService) {
  // Retrieves the attendee from the modern store
}
else {

Separating Deployment and Release | 127



  // Retrieves the attendee from the legacy store
}

Following this approach would allow you to migrate a small batch of users over
to the new system and test that the functionality continues to work for the set of
users. If anything goes wrong as part of the migration, the switch can simply be
toggled back, or else the rollout continues until reaching 100% migration. Like other
services that cross-cut the application, a failure in the feature-flagging service would
be catastrophic if not managed correctly and be a potential single point of failure.
Degrading gracefully using the last known value in a cache or providing default
values can help mitigate this effect.

Feature flags help facilitate the separation between code deploy‐
ment and release. You must clean up feature flags and always create
feature flags with unique names. Once the migration is complete,
the feature flag code should be removed completely. For an exam‐
ple of feature flags going wrong because of this issue, you only have
to look at Knight Capital, where reusing a feature flag and a failed
deployment ended up costing thousands of dollars per second, up
to an eventual loss of $460 million.

Traffic Management
One benefit of moving to an API-based architecture is that we can iterate quickly
and deploy new changes to our Attendee service. We also have the concept of traffic
and routing established for the modernized part of the architecture. This makes it
possible to manipulate the traffic in two places: at the API gateway ingress or within
the constructs defined within the service mesh for shaping traffic.

For Kubernetes and service mesh–based systems, deployment looks roughly like the
following steps:

1. Create a pull request of the changes required to the application, and once the pull1.
request is approved and merged, automatically kick off the deployment build.

2. The build pipeline creates a new image using Docker or the Open Container2.
Initiative.

3. Push the new image to the container registry.3.
4. Trigger a new deployment of the image into the target environment.4.

By default, Kubernetes will replace the running deployment with a new deployment.
Later in this chapter we will look at techniques to phase in the release of a new
pod to actively separate deployment and release. Once the deployment is in place,
the job of deploying code is now complete, and a different set of instructions follow
for the release configuration of the running system. The configuration may also
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have multiple stages, and this is a mechanism we can use to set up different release
strategies. Before we dive into exploring how to structure the release for traffic
management, it is worth exploring the types of releases that you can have within an
API system.

Case Study: Modeling Releases in the Conference System
In “Semantic Versioning” on page 16 (semver), we discussed the idea of different
version strategies associated with APIs. When considering releases, it can be helpful
to couple the ideas in semver with an API Lifecycle.

API Lifecycle
The API space is moving quickly, but one of the clearest representations of version
lifecycle comes from the now archived PayPal API standards. An approach to model‐
ing lifecycle is presented in Table 5-1.

Table 5-1. API Lifecycle (adapted from PayPal API standards)
Planned Exposing an API from a technology perspective is quite straightforward, however once it is exposed and live in

production you have multiple API consumers that need to be managed. The planning stage is about advertising
that you are building an API and gathering initial feedback on the design and shape of the API from consumers.
This allows a discussion about the API and the scope, allowing any early design decisions to be included.

Beta Involves releasing a version of our API for users to start to integrate with; however, this is generally for the
purpose of feedback and improving the API. At this stage the producer reserves the right to break compatibility,
because it is not a versioned API. This helps to get rapid feedback from consumers about the design of the API
before settling on a structure. A round of feedback and changes enables the producer to avoid having many
major versions at the start of the API’s lifetime.

Live The API is now versioned and live in production. Any changes from this point onward would be versioned
changes. There should only ever be one live API, which marks the most recent major/minor version combination.
Whenever a new version is released, the current live API moves to deprecated.

Deprecated When an API is deprecated, it is still available for use, but significant new development should not be carried
out against it.
When a minor version of a new API is released, an API will only be deprecated for a short time, until validation
of the new API in production is complete. After the new version is successfully validated, a minor version moves
to retired, as the new version is backward compatible and can handle the same features as the previous API.
When a major version of the API is released, the older version becomes deprecated. It is likely that will be for
weeks or months, as an opportunity must be given to consumers to migrate to the new version. There is likely
going to be communication with the consumers, a migration guide, and tracking of metrics and usage of the
deprecated API.

Retired The API is retired from production and is no longer accessible.

The lifecycle helps the consumer fully understand what to expect from an API
change. With semantic versioning combined with the API Lifecycle, the consumer
only needs to be aware of the major version of the API. Minor and patch versions
will be received without updates required on the consumer’s side and won’t break
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compatibility. By considering the API Lifecycle and what you can control through
traffic management, you can start to look at the types of changes and consider the
most appropriate way to release new versions of APIs.

Mapping Release Strategies to Lifecycle
Major changes are the most impactful for API consumers. In order to use the new
version of software, consumers must actively upgrade their software that interacts
with the API. As defined in the lifecycle, this means that we need to simultaneously
run a live and deprecated version of the API for a significant amount of time to allow
consumers to upgrade and migrate. This allows the consumer to make an explicit
choice as to when they upgrade. One way to do this is to add the version in the URL:

GET /v1/attendees

Adding in the version is practical and easily visible to the consumer. However, it is
not part of the resource and in some groups is considered not RESTful. An alternative
approach is to have a header describing the major version that will impact the routing
at the ingress to the cluster:

GET /attendees
Version: v1

Minor changes are free from the constraints imposed by major changes. For these
types of changes, it is possible to deploy a new minor version of the API without
accepting production traffic and then use a release strategy to introduce the new
version. This type of change would not require any code changes from the consumer.
Patch changes follow a similar pattern, as they do not change the shape of the API
specification at all. For this type of transparent release to be possible, it is worth
considering adding extra controls into the build process to assure that breaking
changes are not accidentally introduced.

In “OpenAPI Specification and Versioning” on page 16, we took a look at using
openapi-diff to highlight changes between specifications. In the event that the
specification is not backward compatible, the build should fail and prevent a breaking
change from entering the architecture without a conscious override in place. The
majority of releases against an API will be minor changes or patch changes where
loose coupling is a primary concern for the producer and consumer.

If the consumer and producer are tightly coupled, owned by the same team, and
always move together, API versioning and lifecycle will not be critical. In this situa‐
tion it is important to consider a release strategy that allows the release of both
components together and traffic is controlled at ingress. Typically blue-green models
work well for this scenario, and we will review this further in “Release Strategies” on
page 131.
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1 Named after canaries that went into the coal mines first to fatally identify the presence of any dangerous gases.

ADR Guideline: Separating Release from Deployment with Traffic
Management and Feature Flags
The ADR Guideline in Table 5-2 is helpful when considering how to create an ADR
to separate release from deployment.

Table 5-2. ADR Guideline: Separating release from deployment with traffic management and
feature flags guideline

Decision How do you go about separating release from deployment?

Discussion Points Is it possible to separate deployment and release in the existing systems that are live today?
What is the degree of coupling between the consumer and producer in the system?
Do you have a build pipeline where it is possible to enforce the loose coupling requirements of traffic
managed APIs, ensuring that compatibility is tested?

Recommendations Start by working on separating the deploy and release of existing software. This will help to enable an
evolutionary architecture and a simplification of the existing system.
Feature flags are a good way of creating this separation. If the company hasn’t used feature flagging
before, be sure that you review recommended practices and avoid pitfalls associated with flags.
Without careful consideration, feature flags have the potential to become a single point of failure.
Review the type of coupling between APIs in the architecture and decide the correct release strategy for
the situation.

In the next section we will explore the different types of release strategies available.

Release Strategies
Once you have adequately separated deployment and release, you can now consider
mechanisms for controlling the progressive release of features. It is important to
choose a release strategy that allows you to reduce risk in production. Reduction in
risk is achieved by performing a test or experiment with a small fraction of traffic
and verifying the result. When the result is successful, the release to all traffic triggers.
Certain strategies suit scenarios better than others and require varying degrees of
additional services and infrastructure. Let’s explore a couple of options that are
popular with API-based infrastructure.

Canary Releases
A canary release1 introduces a new version of the software and flows a small percent‐
age of the traffic to the canary. In Figure 5-2, the before stage shows the gateway, the
legacy conference at version 1.0, and the Attendee service at v1.0. The concept of a
traffic split between the legacy conference service and Attendee service is in place,
which will be different depending on the target platform. At the deployment stage a
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new v1.1 of the Attendee service is deployed, and at release time we can start to flow
some of the traffic toward the v1.1 service.

Figure 5-2. Deploying the Attendee service using a canary approach

In Kubernetes, traffic splitting can be achieved by introducing a new pod against a
service; you will explore this idea further in “Case Study: Performing Rollouts with
Argo Rollouts” on page 135. It’s quite difficult to control a small percentage—that is,
if you would like 1%, you need to run 99 v1 pods and 1 v2 pod. For most situations
this would be impractical.

In service mesh and API gateways, traffic shifting makes it possible to gradually shift
or migrate traffic from one version of a target service to another. For example, a
new version, v1.1, of a service can be deployed alongside the original, v1.0. Traffic
shifting enables you to canary test or canary release your new service by at first only
routing a small percentage of user traffic, say 1%, to v1.1, and then over time shifting
all of your traffic to the new service. This allows you to monitor the new service
and look for technical problems, such as increased latency or error rates, and also
look for a desired business impact, such as an increase in key performance indicators
like customer conversion ratio or average shopping checkout value. Traffic splitting
enables you to run A/B or multivariate tests by dividing traffic destined to a target
service between multiple versions of the service. For example, you can split traffic
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50/50 across your v1.0 and v1.1 of the target service and see which performs better
over a specific period of time.

As a service mesh is involved with all service-to-service communication, you can
implement these release and experimentation techniques on any service within your
application. For example, you could canary release a new version of the Session
service that implements internal caching of an attendees conference session schedule.
You would monitor for both business KPIs, such as how often a user views and
interacts with their session schedule, and also operational SLIs, such as a decrease in
CPU usages within the service.

Separating Deploy and Release: Canary All-the-Things

With the rise in Progressive Delivery, and also advanced require‐
ments within Continuous Delivery before this, having the ability to
separate the deployment and release of a service (and correspond‐
ing API) is a powerful technique. The ability to canary release
services or run A/B tests can provide a competitive advantage to
your business in both mitigating risks of a bad release and also
understanding your customer’s requirements more effectively. You
will learn more about this in Chapter 9.

Where appropriate, canary releases are an excellent option, as the percentage of
traffic exposed to the canary is highly controlled. The trade-off is that the system
must have good monitoring in place to be able to quickly identify an issue and roll
back if necessary (which can be automated). Canaries have the added advantage that
only a single new instance is spun up; in strategies like blue-green, a complete second
stack of services is needed. This can save cost and the operational complexity of
running two environments in parallel.

Traffic Mirroring
In addition to using traffic splitting to run experiments, you can also use traffic mir‐
roring to copy or duplicate traffic and send this to an additional location or series of
locations. Frequently with traffic mirroring, the results of the duplicated requests are
not returned to the calling service or end user. Instead, the responses are evaluated
out-of-band for correctness, such as comparing the results generated by a refactored
and existing service, or a selection of operational properties are observed as a new
service version handles the request, such as response latency or CPU required.

Using traffic mirroring enables you to “dark launch” or “dark release” services, where
a user is kept in the dark about the new release but you can observe internally for
the required effect. The main difference is the ability to mirror traffic, which during
the experiment/release phase duplicates the request to the attendees v1.1 service. In
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Figure 5-3 the before and deployment stages are identical to the canary release; often
dark deployment is referred to as a specialized canary.

Figure 5-3. Deploying the Attendee service using a traffic mirroring approach

Implementing traffic mirroring at the edge of systems has become increasingly popu‐
lar over the years, and now a service mesh enables this to be implemented effectively
and consistently across internal services. Continuing the example of releasing a new
version of the Attendee service that implements internal caching, dark launching this
service would allow you to assess the operational performance of the release but not
the business impact.

Blue-Green
Blue-green is usually implemented at a point in the architecture that uses a router,
gateway, or load balancer, behind which sits a complete blue environment and a green
environment. The current blue environment represents the current live environment,
and the green environment represents the next version of the stack. The green
environment is checked prior to switching to live traffic, and at go live the traffic is
flipped over from blue to green. The blue environment is now “off,” but if a problem
is spotted it is a quick rollback. The next change would go from green to blue,
oscillating from first release onward.
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In Figure 5-4 the legacy conference service and Attendee service are both at v1.0 and
represent our blue model. During deployment we are looking to deploy the legacy
conference service v1.1 and attendees v1.1 together, creating a green environment.
During the release step, the configuration is updated to target the gateway to point at
the green environment.

Figure 5-4. Deploying the Attendee service using a blue-green approach

Blue-green works well due to its simplicity and for coupled services is one of the
better deployment options. It is also easier to manage persisting services, though you
still need to be careful in the event of a rollback. It also requires double the number of
resources to be able to run cold in parallel to the current active environment.

Case Study: Performing Rollouts with Argo Rollouts
The strategies discussed add a lot of value, but the rollout itself is a task that you
would not want to have to manage manually. This is where a tool such as Argo
Rollouts is valuable for demonstrating practically some of the concerns discussed.
Using Argo, it is possible to define a Rollout CRD that represents the strategy you
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can take for rolling out a new canary of your v1.2 of the Attendee API. A Custom
Resource Definition (CRD) allows Argo to extend the Kubernetes API to support
rollout behavior. CRDs are a popular pattern with Kubernetes, and they allow the
user to interact with one API with the extension to support different features.

The Rollout CRD is a combination of the standard Kubernetes Deployment CRD
with a strategy on how to roll out new features. In the following configuration YAML,
we are running five pods of the Attendee API, and specifying a canary approach to
rolling out the new feature. On triggering the rollout, 20% of the pods will be swap‐
ped for the new version. The {} syntax in the pause tells Argo to await confirmation
from the user before proceeding:

apiVersion: argoproj.io/v1alpha1
kind: Rollout
metadata:
  name: attendees
spec:
  replicas: 5
  strategy:
    canary:
      steps:
        - setWeight: 20
        - pause: {}
        - setWeight: 40
        - pause: {duration: 10}
        - setWeight: 60
        - pause: {duration: 10}
        - setWeight: 80
        - pause: {duration: 10}
  revisionHistoryLimit: 2
  selector:
    matchLabels:
      app: attendees-api
  template:
    metadata:
      labels:
        app: attendees-api
    spec:
      containers:
        - name: attendees
          image: jpgough/attendees:v1

After installing Argo to our cluster and applying the preceding configuration, the
cluster will have five pods of the version 1 Attendee service running. A really nice
feature of Argo is that the dashboard helps to clearly visualize the current status of
the rollout. Figure 5-5 shows the starting point of the rollout, running five pods of the
attendees v1 service.
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Figure 5-5. Argo Rollouts starting point

Executing the following command introduces the v1.2 canary into the platform:

kubectl argo rollouts set image attendees attendees=jpgough/attendees:v1.2

Figure 5-6 shows that the release is on the first step of the strategy with a 20% weight
now set to the canary for attendees v1.2. As the UI demonstrates, the rollout is now
in the Pause step, waiting for the manual promotion to be triggered to continue the
rollout, either from the UI or command line. It is also possible to quickly roll back the
canary release if an issue is encountered.
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Figure 5-6. Argo Rollouts canary

In this simple example, you have explored the Kubernetes level only; however, it
is possible to fully integrate with features of service mesh to control rollouts. It is
also possible to integrate with ingress gateways such as NGINX and Ambassador to
coordinate traffic management with the release. Tools like Argo make rollouts and
traffic-based releases quite compelling.

In addition to manual promotion steps explored in this walkthrough, it is also possi‐
ble to drive promotion based on the analysis of metrics. The following is an example
of an AnalysisTemplate that uses Prometheus metrics to observe the success rate of
deploying a canary. This analysis stage can be represented in the Rollout definition,
allowing the rollout to progress if the success criteria are met:

apiVersion: argoproj.io/v1alpha1
kind: AnalysisTemplate
metadata:
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  name: success-rate
spec:
  args:
  - name: service-name
  - name: prometheus-port
    value: 9090
  metrics:
  - name: success-rate
    successCondition: result[0] >= 0.95
    provider:
      prometheus:
        address: "http://prometheus.example.com:{{args.prometheus-port}}"

Success rate is a fairly simple metric; however, there are situations where APIs fail
that are not indicative of a fault in infrastructure but rather the client request. Let’s
explore some of the key principles that are important from an API perspective that
you can use to both operate the plant and also inform your rollout strategies.

Monitoring for Success and Identifying Failure
Consider the legacy conference system case study in the Introduction and how you
would go about investigating an issue in a single application. A single service has a
single logfile to trace requests and processing by the application. There is only one
application to look at for the overall health of the process on the server. Separating
out multiple services, such as the Attendee service, results in an increase in opera‐
tional complexity. The more hops between services introduces a potential for failure
and manually finding what has gone wrong soon becomes difficult.

Three Pillars of Observability
API-driven architectures are decoupled and, without appropriate support, are com‐
plex to reason about and troubleshoot. Observability provides transparency into your
system, providing a full understanding of what is happening at all times. Observabil‐
ity is best described by the three pillars, an operational minimum required to reason
about distributed architecture:

• Metrics are a measurement captured at regular intervals that represent an impor‐•
tant element to the overall platform health. Metrics can be at different levels
across the platform, and the freedom of structure means that a platform can
determine what metrics are important to capture. For example, a Java platform
may choose to capture CPU utilization, current heap size, and garbage collection
pause time (to name a few).

• Logs are granular details of processing from a given component, and often the•
quality of logs is closely tied to the application or infrastructure component
emitting them. Log format influences the utility of searching and processing
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of log data significantly, with structured logging facilitating a better search and
retrieval of relevant data. In a distributed system, logs alone are usually not
enough, and they are often better explored with the addition of context provided
by traces and metrics.

• Traces are essential when moving to a distributed architecture, enabling the•
tracking of each request through all the components interacted with in the archi‐
tecture. For example, if a request fails, tracing will enable you to quickly locate
the exact component in the architecture that is failing. Tracing works by adding
a unique header as close to the origination of the request as possible; this header
is propagated in all subsequent processing of a given request. If the context of the
request moves over to a different type of infrastructure (e.g., a queue), the unique
header will be recorded in the message envelope.

You can find a more detailed introduction in Distributed Systems Observability
(O’Reilly) by Cindy Sridharan.

Implementing the three pillars across the platform is not enough.
In “Reading the Signals” on page 141, we will cover how to make
use of the three pillars of observability to operate infrastructure
involved with an API platform.

For the three pillars of observability, the OpenTelemetry project is the best place
to start. The project provides an open standard in the Cloud Native Computing
Foundation (CNCF), preventing vendor lock-in and facilitating the widest possible
compatibility. Although metrics and tracing standards have been created and are
stable, logging is a slightly more difficult problem to solve (due to the vast array of
different possible emitters), but it is also covered in the OpenTelemetry project.

Important Metrics for APIs
Considering which metrics are important for an API platform is a key decision
that will help discover outages early, and possibly even prevent them. You could
measure and gather a wide range of different metrics, but some metrics will also be
dependent upon your platform. Rate, Error, Duration (RED) metrics are often noted
as one approach to measuring traffic-based service architectures. Part of the appeal
is that these metrics provide a good overview of what is going on at a point in time.
Rate shows how many requests per second a service is processing (or throughput),
what errors are returned, and the duration (or latency) of each request. In the Site
Reliability Engineering (SRE) world, these metrics help us to derive The Four Golden
Signals—latency, traffic, errors, and saturation.

Perhaps one of the biggest drawbacks of RED/golden signals is that it is easy to apply
the rules and miss out on the wider context (or understanding) of the system. For
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example, is every error from an API caused by a service in the request chain? For
APIs the context of the error is really important—for example, a 5xx range error is
important as it highlights a failure caused by an infrastructure component or service.
A 4xx error isn’t a service problem and is more the problem of the client, but can
you simply ignore this error code? A series of 403 Forbidden errors could indicate
that a malicious actor is attempting to access data that they are not entitled to. This is
one example of why context is critical, and time spent investigating what metrics are
important takes API reasoning beyond RED metrics.

Important metrics should be tied to alerting in order to ensure that you can swiftly
deal with problems (or upcoming problems). You have to be careful when setting
alerts to avoid false positives. For example, if an alert is generated on low or no
activity this could be triggered on bank holidays or weekends. Only having this type
of alert scheduled for core business hours could help, or perhaps tying it to the
current number of website logins.

In our conference system case study, the following would be considered important
example metrics to capture:

• The number of requests per minute for attendees.•
• The service-level objective (SLO) for attendees is average latency for responses. If•

the latency starts to significantly deviate, it could be the early signs of an issue.
• Number of 401s from the CFP system could indicate a vendor compromise or a•

stolen token.
• Measure of availability and uptime of the Attendee service.•
• Memory and CPU usage of the applications.•
• The total number of attendees in the system.•

Reading the Signals
So far we have discussed observability and why this is important, along with the
purpose of each pillar. We have looked at some key metrics for APIs, but also
added a caution that implementation alone or metrics without context is not enough.
We mentioned the idea of capturing metrics from the running application such as
garbage collection time. Increasing time spent garbage collecting might be an early
symptom that your application is about to fail. Garbage collections typically spend
time pausing applications, which in turn results in requests being delayed and can
impact latency. Spotting this early is the equivalent of a car engine making a strange
noise; it still works but something isn’t quite right.

In order to read the signals, establishing an expectation or baseline is really helpful,
and then measuring within this range and alerting when outside the range can help
spot a problem. The next step would be observing the actual metric for API latency
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being impacted—the equivalent of the check engine light now showing. The sooner
you can read the signals of a potential issue, the less the likelihood of there being
a client-impacting problem. If both measures are ignored, the application eventually
falls over, leaving the team scrambling to repair.

Understanding the software and the link into key metrics helps lead to a mature
operational platform with early identification and hopefully resolution of problems.
In distributed architectures, failure is inevitable, and in an outage scenario, traces
would be the first port of call to narrow down the root cause. We have seen it take
hours to dig into the cause of a problem without tools like tracing, with developers
turned detectives poring over logs trying to find clues as to “whodunnit.” Another key
consideration is how quickly the team responds to various events. If the first time is
when all API traffic is not working, it’s going to be stressful (and possibly business
impacting).

Application Decisions for Effective Software Releases
Distributed architectures introduce new challenges and considerations for releasing
software and require changes at the application level. In this section you will explore
some of the gotchas when releasing in a distributed architecture and how to resolve
them.

Response Caching
Response caching can be a real issue when it comes to application components in
particular gateways and proxies. Consider the following scenario. We try to perform
a canary release of the Attendee service, and everything looks to be going nicely,
so we proceed with the rollout of all new services. However, the service calling
GET /attendees was using a proxy, which now bounces, producing 500s everywhere.
It turns out the cached result was masking the fact that our new software was broken.

To avoid caching results it is important to set a header on the client making the GET
request, i.e., Cache-Control: no-cache, no-store. Eventually the cache will expire
and we achieve a consistent state.

Application-Level Header Propagation
Any API services that terminate an API request and create a request to another
service need to copy headers across from the terminated request to the new request.
For example, any tracing- or observability-related headers need to be added on to the
downstream request to ensure distributed tracing is observed.

For authentication and authorization headers, it is important to have an opinion
on what can safely be sent downstream. For example, forwarding an authentication
header can end up with a service being able to impersonate another service or user,
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causing issues. An OAuth2 bearer token, however, is safe to send downstream (as
long as the transport is secure).

Logging to Assist Debugging
Things are going to go wrong in a distributed architecture! Often, being able to see
that a request made it to a service is really valuable, especially if you don’t consider
caching. It is useful to think of logs in two different types: journal and diagnostics. A
journal allows the capturing of important transactions/events within the system and
is used sparingly. An example of a journal event is the receipt of a new message to
process and the outcome of that event. Diagnostics are more concerned with failures
in the processing and any unexpected errors outside of a journal-based event. As part
of the structured log, you can add a field to represent the log type, allowing quick
access to either only journals or full diagnostics.

Considering an Opinionated Platform
Often there is no conscious decision about what approach to take with the decisions
we have covered in this section, which can lead to repeated work or inconsistent
approaches. One option to solve this problem is to create a platform team and
develop an opinionated platform. The opinionated platform would make key deci‐
sions on how to solve problems as part of the technical platform, avoiding the need
for every developer to implement the same platform features.

For opinionated platforms to be successful, they need to enhance the path to produc‐
tion, taking into account DevOps and other key factors required to operate on the
platform. This is often referred to as the paved path or golden path to production.
Creating a platform that development teams want to use and that makes solving
business problems easier will have a far greater chance of adoption. It is important to
remember that creating opinions creates constraints, so there is a trade-off between
developer freedom and applications that work as expected within an organization.

ADR Guideline: Opinionated Platforms
Choosing to create an opinionated platform is most successful when the developers of
the platform are involved in the design process. In the guideline in Table 5-3, you will
explore what points to consider and the importance of involving developers to create
a successful opinionated platform.
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Table 5-3. ADR Guideline: Opinionated platforms
Decision Should you adopt an opinionated platform for your deployments and releases?

Discussion Points What are our languages for developing software in the organization? Is it possible to center around a few
to live within the opinionated platform?
Is the organization set up in a way where you can empower developers as customers and run the
opinionated platform as an internal product?
What are the constraints or features that are going to add benefit to introducing a platform? For
example, should monitoring and observability be features supplied out of the box to developers?
How do you update the platform recommendations and help provide changes to teams already using the
platform?

Recommendations Consider developers as customers of the platform product and create a mechanism that supports
developers providing input.
The key features should be as transparent as possible to developers (e.g., configures a library to
introduce open telemetry).
New applications always get the latest features in the stack. However, how do you ensure that existing
platform users can easily get access to the latest features?

Summary
In this chapter we have provided an introduction to deploying and distributing
software in an API architecture:

• A valuable starting point is to understand the importance of separating deploy‐•
ment and release. In existing applications, feature flagging is one approach to
configuring and enabling new features at a code level.

• Traffic management provides a new opportunity to use the routing of traffic to•
model releases.

• Major, minor, and patch releases help to separate the style of release options.•
Applications that have a tightly coupled API may use a different strategy.

• You have reviewed the release strategies and the situations in which they apply,•
and you saw how tools like Argo can help to facilitate rollouts effectively.

• Monitoring and metrics are an important measure of success in an API platform.•
You have reviewed why some metrics can be gotchas and could suggest a prob‐
lem where there isn’t one. You have learned a primer to observability and why
applying these technologies is critical to successfully operating an API platform.

• Finally, you explored application decisions to support effective rollouts and what•
platform owners may wish to consider when aiming for consistency across the
plant.

Deploying and releasing APIs effectively is critical to a successful API-driven archi‐
tecture. However, it is important to think about security threats API systems will face
and consider how to effectively mitigate the risk. This is the focus of Chapter 6.
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1 Ideally security should “start left” to bring security in as a foundation.

CHAPTER 6

Operational Security:
Threat Modeling for APIs

At this stage you have explored the full API Lifecycle—taking into consideration
design and testing, options for deployment, and strategies for releasing APIs. The
Attendee API may appear like it is ready to be exposed to external systems. APIs are
quick to build, tricky to design for future compatibility, and even harder to secure.
The truth is that developers and architects focus on delivering functionality, and
security is often not considered until toward the end of a project.

In this chapter, you will see why security is important and how not having proper
security in place can damage your reputation and be expensive. You will learn how
to examine a system’s architecture for security weaknesses and determine the threats
that could be encountered within a production environment. Of course, you won’t
be able to identify all the threats—attackers are devious, and the threat landscape
continually evolves—but the critical skill for architects is to be able to “shift left”
the design and implementation of security concerns, both for themselves and for the
wider development teams.1 The earlier you consider security within your software
development lifecycle (i.e., the further left this can be shifted), generally speaking, the
easier and more cost effectively you can adapt to the evolving threat landscape. This
will help you make informed decisions when engaging in the security design for APIs.

In “Enforce Security: Transport Security, Authentication, and Authorization” on page
100, we reviewed how communication within a control plane or system is possible to
secure using mTLS. However, once “external” systems outside of the control plane’s
reach are introduced, a new approach is required.
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2 For an exhaustive reference and description of ways to perform threat modeling, please refer to Threat
Modeling by Izar Tarandach and Matthew J. Coles (O’Reilly).

Case Study: Applying OWASP to the Attendee API
You will begin your journey toward designing secure systems with an introduction to
threat modeling. You will then explore how to conduct a threat model exercise, using
the Attendee service and API as an example, as shown in Figure 6-1.

Figure 6-1. The Attendee API that will be used in the threat modeling exercise

A core component of threat modeling is looking for potential security weaknesses,
so you will explore the OWASP API Security Top 10, which you can use both as a
source of inspiration when hunting for issues and as a source of mitigations when
you are attempting to address the threats found. By the end of the chapter you
will understand what threat modeling is and how you can apply this to your own
projects.2

Open Web Application Security Project (OWASP) is a nonprofit foundation that
works to improve the security of software. The most well-known project by OWASP
is the OWASP Top 10; this project is a list of the most critical security risks faced
by web applications. In 2019 OWASP produced a new top 10 list—this was the API
Security Top 10. The list is based on the work of security experts who examined
security breaches and bug bounty programs, and penetration testers also gave their
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3 Individuals like Edward Snowden and TV shows like Mr. Robot have increased security conversations in the
general public.

input on what should be in this top 10. This is not an exhaustive list of all the threats
you will face. However, you should keep them in your mind when looking at how
your API might be exploited. These lists are updated periodically, so it is important to
look for changes and updates to the top 10 as they evolve.

The Risk of Not Securing External APIs
Though security has become more appealing and been brought into the limelight
as a topic,3 it has struggled to gain the same popularity as technologies such as
machine learning, big data, and quantum computing. For the majority of software
professionals, security is not always at the forefront of their minds. Developers are
focused on coding business solutions, SRE teams ensure the plant is running, and
product owners focus on the planning of new valuable features. Security is often
deferred, and if you are fortunate to have a security team, then it may get delegated to
them. The perceived value for the customer is (normally) not in the security controls
implemented but rather in the service that your system provides.

Security breaches can have catastrophic impact: there is a usually significant risk to
an organization’s reputation. Financially, the impacts are huge: “the average cost of a
cyber-breach to a publicly traded company was $116 million” and the average cost of
a data breach for an organization in 2021 was $4.24m, up 10% from the previous year.

Following are a few example headlines of security breaches that have had a huge cost,
both financially and socially:

• Databases Leak Data Of 419 Million Users•
• Data Breach Impacts 143 Million Americans•
• Security Breach Exposes personal information of 47 Million Users•
• $17.5 million settlement over data breach•
• 106m customer records stolen and issued a $80m fine•
• £16.4m fine for failings surrounding a cyber-attack•

The last two articles are interesting, as the regulators issued penalties for breaking
regulatory rules or not responding appropriately. It is important to look at your
operating environment to see what requirements exist for client data governance. A
fair assumption from users is that appropriate measures are being taken to protect
their privacy and data; if not, your organization is accountable. One such regulatory
requirement is the General Data Protection Regulation (GDPR), which gives greater
control to individuals over their personal information. These can carry serious
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4 For a full breakdown of DFDs, visit the OWASP DFD introduction page.

financial penalties if not followed. Currently, the biggest fines issued for breaking
GDPR include Amazon with a £636m fine and WhatsApp with a €225m fine.

The accountability of an organization goes beyond APIs and sys‐
tems developed by the organization. Vendor products and open
source software present real challenges if not carefully managed.
Ensure that vendor products are held to the same standard that you
would hold your own software development standards to. Open
source software vulnerabilities can be wide reaching. Ensuring
that an organization tracks Common Vulnerabilities and Exposures
(CVEs) and is able to rebuild impacted software is critical.

Threat Modeling 101
Threat modeling is a “technique you can use to help you identify threats, attacks,
vulnerabilities, and countermeasures that could affect your application”. To use a
real-world analogy, if you were conducting a threat modeling exercise for your house
or apartment, you would identify things like points of entry (doors, windows) and
whether you have given a front door key to a neighbor. This approach is beneficial
as it is only possible to mitigate security risks once the threats have been clearly
identified. It also helps to prioritize efforts to improve security and avoid meaningless
efforts or security theater. To continue the house example, it would not be beneficial
if you spent a large amount of money on a steel reinforced front door only to leave
the key under your doormat or the flower pot right outside.

Threat modeling is a process that should be integrated into your entire software
development lifecycle. Ideally it is conducted at the beginning of a project and is
continually revisited as the system and architecture evolves. The good news is that
there are a number of well-defined methodologies for threat modeling. In this book
we will use the STRIDE methodology designed by Praerit Garg and Loren Kohnfelder
at Microsoft. You’ll learn more about this methodology later in the chapter.

Threat modeling of software systems has historically been performed using data flow
diagrams (DFDs).4 DFDs capture the dynamic (data flow) aspects of a system, while
C4 models primarily capture the static (structural) aspects of the system. DFDs are
simple to understand and data-centric, which makes it easy to see how data flows
through the system. The core components for DFDs are:

External entities
These are applications/services that are not part of your system. In our case this
would be the mobile application.

148 | Chapter 6: Operational Security: Threat Modeling for APIs

https://oreil.ly/0VlaM
https://oreil.ly/rcWyY
https://oreil.ly/TuYnM
https://oreil.ly/ahFgn
https://oreil.ly/ahFgn
https://oreil.ly/peFDx


Processes
An application/task that is in our domain, such as the API gateway.

Datastores
A location where data is stored. For the case study, this would be the database.

Data flows
Connection that represents the flow of data, such as the mobile application to the
API gateway.

Boundaries
A privileged or trust boundary to show a change in trust levels. A boundary for
the case study would be the internet boundary between the mobile application to
the API gateway.

As part of our threat modeling, we have created a DFD as shown in Figure 6-2.

Thinking Like an Attacker
Architects and development teams can at times be reluctant to consider security
issues, as they believe this is the job of a specialist team. However, who better than
the people designing and building the key structural components of a software system
to identify and understand potential weaknesses? Architects and security experts can
then collaborate on addressing these problems and work together to explore different
angles of attack. The good news is that to conduct a threat modeling exercise, you do
not need to be a security expert yourself, but you need to think like an attacker or bad
actor.

Thinking like an attacker is often easier than you think, as you do it all the time (just
by asking yourself “what would the attacker do?”)! For example, when you park your
car in the evening, what do you do with your car keys? Do you leave them in the car?
Probably not if it is left on the street, though you may if it is in a garage. You could
leave the keys by the front door. However, someone could use a coat hanger through
the letter box to take your keys, or, if a wireless car, the attacker could use signal
amplification. So do you take them upstairs? And with the rise of electronic locking
systems and immobilizers, do you put them in a Faraday cage? What you are doing
here is looking at a situation and evaluating the threat and weighing up the risk. You
now need to apply this approach to designing software systems, with a little help from
existing well-defined methodologies.

How to Threat Model
As with many methodologies within software design and development, there are
well-defined goals, approaches, and techniques to threat modeling that architects and
engineers have refined over the years. The high-level approach to threat modeling is:
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1. Identify your objectives—Create a list of the business and security objectives.1.
Keep them simple (e.g., avoid unauthorized access).

2. Gather the right information—Generate a high-level design of the system and2.
ensure you have the right information. To be able to understand how your sys‐
tems work and work together, this will include having the right people involved
in the conversation.

3. Decompose the system—Break down your high-level design so that you can start3.
to model the threats. This may require multiple models and diagrams.

4. Identify threats—Systematically look for threats to your systems.4.
5. Evaluate the risk of the threats—Prioritize threats to focus on the most likely5.

ones, then identify mitigations to these likely threats.
6. Validate—Ask yourself and your team if the changes in place have been success‐6.

ful. Should you perform another review?

Let’s now explore these steps in more detail, using the case study as the system that
you want to perform a threat modeling exercise on.

Step 1: Identify Your Objectives
The first step of threat modeling is to identify your objectives; this is the driver for
performing the threat modeling. When deciding objectives for your own systems, you
should focus on what security goals you are trying to achieve. These goals should be
sourced from across your entire organization, and not just your team and the InfoSec
teams. Security objectives are often driven from business goals, such as avoiding data
leakage to prevent being sued or being compliant with regulations like GDPR. If
these are just sourced from your immediate area, then you do not have a complete
picture of the most important issues that face your organization. Your objectives for
the Attendee service is to prepare the API for external consumption by third parties
by ensuring that the OWASP Top 10 are mitigated.

Step 2: Gather the Right Information
Once you have the goals in mind, Step 2 of threat modeling is acquiring the infor‐
mation about how the system works. With threat modeling, you need to bring in
experts on each area of the system and associated codebases or products. This is to
ensure that you understand how everything works and that no hidden assumptions
are made. For the Attendee API, this will require bringing in members of the team
who work across all of your components; mobile, gateway, databases, and Attendee
service.
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5 You can find the Microsoft Threat Modeling Tool here and explore other options via the OWASP Threat
Dragon GitHub repo.

Step 3: Decompose the System
The third step of the threat modeling process is to create a diagram of the system
that shows the component interactions with the flow of data. The information
gathered collaboratively is then used to create the DFDs. Creating diagrams can be
time-consuming, so we recommend using dedicated threat modeling tooling. For the
case study data flow diagram, shown in Figure 6-2, we used the Microsoft Threat
Modeling Tool, although other tools are available.5

Figure 6-2. Data flow diagram

Step 4: Identify Threats—Taking This in Your STRIDE
The fourth step of threat modeling is all about looking at the threats to the system.
When you start looking at the data flow diagram, it is important to keep your threat
modeling objectives in mind, otherwise it can be tempting to go off on a tangent.

The benefit of using the dedicated Microsoft Threat Modeling Tool is that it can con‐
duct some automated analysis for you using the STRIDE methodology. The generated
list is not complete, but it can be used as a starting point. The list of generated threats
for our Attendee API System is seen in Figure 6-3. In this case the tooling has found
27 potential threats.

How to Threat Model | 151

https://oreil.ly/ahFgn
https://oreil.ly/NXF8U
https://oreil.ly/NXF8U


6 The definitions used come from the paper “The threats to our Products” (download) written in 1999 by Loren
Kohnfelder and Praerit Garg, the creators of STRIDE.

Figure 6-3. Data flow diagram threat analysis

The STRIDE acronym stands for:6

Spoofing
Breaching the user’s authentication information. In this case, the hacker has
obtained the user’s personal information or something that enables him to replay
the authentication procedure. Spoofing threats are associated with a wily hacker
being able to impersonate a valid system user or resource to get access to the
system and thereby compromise system security.

Tampering
Modifying system or user data with or without detection. An unauthorized
change to stored or in-transit information, formatting of a hard disk, a malicious
intruder introducing an undetectable network packet in a communication, and
making an undetectable change to a sensitive file are all tampering threats.

Repudiation
An untrusted user performing an illegal operation without the ability to be
traced. Repudiability threats are associated with users (malicious or otherwise)
who can deny a wrongdoing without any way to prove otherwise.

Information disclosure
Compromising the user’s private or business-critical information. Information
disclosure threats expose information to individuals who are not supposed to see
it. A user’s ability to read a file that she or he was not granted access to, as well as
an intruder’s ability to read the data while in transit between two computers, are
both disclosure threats. Note that this threat differs from a spoofing threat in that
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7 Though this definition is about individual machines, the context of what a denial of service attack is, is still
the same today. It’s about taking resources offline.

8 Two additional methodologies include P.A.S.T.A and Trike.

here the perpetrator gets access to the information directly rather than by having
to spoof a legitimate user.

Denial of Service
Making the system temporarily unavailable or unusable, such as those attacks
that could force a reboot or restart of the user’s machine. When an attacker can
temporarily make the system resources (processing time, storage, etc.) unavail‐
able or unusable, we have a denial of service threat. We must protect against
certain types of DoS threats for improved system availability and reliability.
However, some types of DoS threats are very hard to protect against, so at a
minimum, we must identify and rationalize such threats.7

Elevation of privilege
An unprivileged user gains privileged access and thereby has sufficient access to
completely compromise or destroy the entire system. The more dangerous aspect
of such threats is compromising the system in undetectable ways whereby the
user is able to take advantage of the privileges without the knowledge of system
administrators. Elevation of privilege threats include those situations where an
attacker is allowed more privilege than should properly be granted, completely
compromising the security of the entire system and causing extreme system
damage. Here the attacker has effectively penetrated all system defenses and
become part of the trusted system itself and can do anything.

You can use this acronym when evaluating your system at each point of your archi‐
tecture to see what threats exist. There are also other threat modeling methodologies
that can be used.8

As you look at the data flow diagram in Figure 6-2, you can see the boundary that
exists between the client application and the API gateway. An API gateway is often
located at the edge of our network and can also be internet-facing, as you learned
in “Where Is an API Gateway Deployed?” on page 59. You are going to explore a
number of different threats related to the API gateway and learn how this can be
used to protect your system against many of the common API vulnerabilities. If you
protect your system at the edge, the risks can often be reduced throughout your sys‐
tem, but this is not always the case. You will learn more about the move from zonal
architecture, where traffic inside your security perimeter is treated differently than
traffic outside, toward zero-trust models, where traffic is constantly re-authenticated,
in “From Zonal Architecture to Zero Trust” on page 217.
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Your case study security goals are quite specific: the Attendee API should be prepared
for external consumption, and to achieve this we will ensure that each process
mitigates the OWASP API Security Top 10 issues. As this is a direct objective, the
DFD can be used to map data flows to the issues and vulnerabilities listed on the
OWASP site. However, typically a threat modeling objective may be something like
“Prevent data leakage of PII to conform with GDPR,” or “Provide 99.9% availability
for APIs to fulfill contractual obligations.” This second objective may not appear to
be related to security, however you will want to keep DoS at the forefront of your
mind, as not fulfilling this obligation, even when under a DoS attack, could result in a
financial penalty.

Let’s now review the system and apply STRIDE. To highlight the OWASP API Secu‐
rity Top 10, the threats will be grouped under the applicable STRIDE value. This is to
showcase both the application of STRIDE and the OWASP API Security Top 10 along
with their mitigations. When you are identifying threats in your own architecture, it
is recommended you apply STRIDE to each process and connection—this is known
as STRIDE per element.

Spoofing
Spoofing is when a person or program is able to masquerade as another person
or program. To mitigate this, you will want to authenticate any requests that are
made and ensure that they are legitimate. Within the OWASP API Top 10, one of
the security issues is Broken User Authentication. This is definitely related to the
spoofing category, so you are going to want to ensure that the authentication flow
is not broken. To learn more about this, “Authentication” on page 167 provides
information and an example using the case study.

Tampering
Next in the STRIDE methodology is “tampering,” with the goal that users or clients
should not be able to modify the system, application, or data in an unintended
manner. For example, it should not be possible that a bad actor can modify the
Attendee service by redirecting traffic intended for the Attendee service to an external
location, or by updating attendee user data inappropriately. There are two primary
ways that tampering occurs: through payload injection and mass assignment.

Payload injection.    Payload injection occurs when a bad actor attempts to inject a
malicious payload into the request made to an API or application. Note that in the
OWASP Security Top 10, this relates not only to the commonly known SQL injection
but also to injection for any user input. In the case study, you can aim to prevent
injection attacks early in the request handling chain, by using the API gateway to
validate that the request made conforms to a defined contract or schema. Any request
that does not fulfill the contract can be denied or the corresponding traffic dropped.
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9 The Active Record pattern is the practice of exposing a data object and its functions, which more or less map
to the underlying database model.

This approach is described in “Practical Application of OpenAPI Specifications” on
page 13. Increasingly, OpenAPI Specifications are used for validating HTTP requests.

It is worth mentioning that although input validation is valuable when conducted
at the API gateway, it does not mean you can omit further input validation and
sanitization within the backend services; trust, but verify!

An example of this for the Attendee service would be receiving the following POST
request with this sample payload to create a user:

POST /attendees
{
  "name": "Danny B",
  "age": 35,
  "profile": "Hax; DROP ALL TABLES; --"
}

The OpenAPI Specification for the Attendee API defines that name should only
accept letters, age accepts positive integers, and profile accepts letters, numbers,
and special characters in the value (because it is for the user to write a little about
themselves). The API gateway, which in this case is performing the input validation,
will inspect the payload and only let it pass if the input validation is successful. Even if
the input validation passes, the Attendee API should still sanitize the input to prevent
an attack. The Attendee service would use prepared statements when communicating
with the database. It is important to have multiple lines of defense in case one of them
fails.

Mass assignment.    Modifiable properties that are bound to database entities are vul‐
nerable to being inappropriately changed. They can be exploited by the vulnerability
known as mass assignment. This is an important case to consider, particularly if your
underlying application uses the Active Record pattern9 or some form of automated
entity database serialization/deserialization, as often provided by object-relational
mapping (ORM) frameworks.

Let’s examine a hypothetical case for our Attendee API. Imagine that there is a
property called devices that is returned when making a request for an attendee. This
property is designed to be an externally read-only list of devices that the attendee
has used to connect to the API, and this should only be updated by the attendee
application code.

A bad actor makes a GET request for an attendee (/attendees/123456) and receives
the following response:
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{
  "name": "Danny B",
  "age": 35,
  "devices": [
    "iPhone",
    "Firefox"
  ]
}

Now the bad actor issues a PUT request to the Attendee API to update the age
attribute, and they also maliciously attempt to update the devices list:

PUT /attendees/123456
{
  "name": "Danny B",
  "age": 36,
  "devices": [
    "vulnerableDevice"
  ]
}

Any data in the devices list should be ignored when the entity is saved to the
database. Mass Assignment is typical where client input data is bound to internal
objects without thought of the repercussions, which is often a consequence when
exposing a database API as a web-based API. In Chapter 1 the concerns of exposing
an underlying data model are discussed from a usability point of view, which provides
additional reasons not to do this.

This vulnerability is not something that can typically be solved at the API gateway
level; instead, this must be guarded against within the API implementation itself.

Repudiation
According to STRIDE, a repudiation attack happens when an application or system
does not adopt controls to properly track and log users’ actions, which permits mali‐
cious manipulation or forging the identification of new actions. For many requests
that are made to an API, it is important to understand the details of the request,
the payload, and the response generated (and corresponding internal actions). In
certain regulatory or compliance use cases, you may need to arbitrarily inspect what
was in an exchange. If a request can be repudiated—i.e., there is no proof of what
the attacker has done—then the attacker can reject or disagree that they have tried
to perform any such malicious action. This is why repudiation threats (the “R” in
STRIDE) are included in STRIDE methodology.

To identify requests that are passing through your system and to understand what
is happening, you need to add logging and monitoring. Insufficent logging and
monitoring is a vulnerability in the OWASP API Top 10. With all requests from users
flowing through the API gateway, this is an obvious centralized point to monitor the
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traffic and to log the requests and responses. Many API gateways will provide this
functionality out-of-the-box, but you need to understand how to store, search, and
extract this information, particularly over the course of time. As with any disaster
recovery and business continuity (DR/BC) capabilities, logging and monitoring must
be regularly verified in order to ensure that you are capturing what is expected.

Information disclosure
Information disclosure is the “I” in STRIDE, and this is focused on not exposing
information that should only be used internally or kept secret. Two common antipat‐
terns in this category of threat include excessive data exposure and improper assets
management.

Excessive data exposure.    The OWASP API Top 10 Excessive data exposure is focused
on making sure data is not exposed inappropriately. As a hypothetical scenario,
imagine the Attendee service holds PII such as a passport number. When designing
your API, it is important to prevent the inappropriate exposure of this data. It is
all too easy to make naive assumptions about how an API will be called, especially
as a system evolves over time. APIs that were initially intended only for internal con‐
sumption can be exposed publicly (with good intentions), or a previous API that was
only accessible to a trusted client application can be opened to public consumption.

If an API is called via a web application, it is easy to examine requests, responses,
and corresponding payloads via the developer tools included within modern web
browsers. For example, any user information request made to the Attendee API may
accidentally return passport information:

{
  "values": [
    {
      "id": "0",
      "name": "Danny B",
      "age": 65,
      "email", "danny.b@masteringapis.com",
      "passport": "Abc12408NJUILM"
    },
    {
      "id": "1",
      "name": "Jimmy G",
      "age": 93,
      "email": "jimmy.g@masteringapis.com",
      "passport": "ZYX123ASJJ0072M"
    }
  ]
}

It is possible to perform response validation in an API gateway. However, it is the
responsibility of those building the API to know what they are exposing and to
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not expose sensitive data that should be private. Any implementation in an API
gateway should be seen as the verification of last resort (or part of a “belt and braces”
approach to verification). You will also need to ensure that you don’t leak sensitive
data back to calling clients, such as the versions of a web server being used or an
application stack trace that has been generated as a result of a crash.

Improper assets management.    Improper assets management typically occurs as your
systems evolve, and the organization loses track of which APIs (and which versions)
are exposed or which APIs were designed for internal consumption only. As a hypo‐
thetical example with the Attendee API, it could be possible to have multiple versions
of the API deployed into production, with an early version of the API exposing
all attendee properties by default. As the data model evolves, several private fields
that contain PII are added, and new versions of the Attendee service remove this
information when the API is queried. Even if the old version of the Attendee service
does not fully function, it can still be used to extract the additional information
contained in the data model.

A hypothetical example for the Attendee service is that the /beta/attendees end‐
point is publicly exposed. This early version was exposed for some testing and then
forgotten about. As there is no proper management over exposed assets, it is not
noticed, but an attacker could try to call the endpoint. If all API traffic is managed
through your gateway, you should have a registration within it to know what exists.
You can also examine requests and look for anomalies of requests called to unexpec‐
ted endpoints.

To counteract this problem, an API management or developer portal platform can be
used to catalog and track all APIs deployed to production. Many API Management
solutions include this functionality as standard, as it is seen as a vital component to
manage the lifecycle of APIs.

Denial of service
Within the STRIDE methodology, the “D” is focused on denial of service (DoS).
A DoS attack attempts to overwhelm a system or any of its defenses for malicious
purposes. For example, a firewall that becomes overloaded may default to allowing
all traffic, which enables an attacker to make malicious calls that previously would
have been blocked. Or a bad actor may simply want to deny availability of a critical
service, such as a voting website. By overloading the system with traffic, no legitimate
requests can be made and no user can vote. The OWASP API Top 10 has a security
issue that covers DoS extensively.

The Attendee API needs to meet your scalability demands, but it should also guard
against becoming overloaded with traffic. To accomplish this, you can use the tech‐
niques of rate limiting and load shedding.
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10 One of the authors, Daniel, has written a series of articles about rate limiting and its application to API
gateways. The first article of the series is available online at: “Part 1: Rate Limiting: A Useful Tool with
Distributed Systems”.

Malicious DoS attacks or Distributed DoS attacks are best handled by specialist ser‐
vice providers, software, or hardware. For example, many content delivery network
(CDN) providers include DoS prevention by default, and most public vendors offer a
similar service that can be attached to public domain names and IP addresses.

A denial of service can occur by accident, such as “friendly fire
DoS,” that is caused by your own systems. As systems evolve, it
is not uncommon to accidentally introduce circular dependencies,
and given the right conditions, this can involve internal services
calling each other’s, APIs in an infinite loop. This is why imple‐
menting rate limiting and error monitoring on internal API calls
can be invaluable!

Rate limiting and load shedding.    Rate limiting, as the name suggests, limits the number
of requests that can be made to your API over a period of time.10 The use of rate
limiting typically refers to rejecting traffic based on properties of individual requests
(too many from a given user, client application, or location). Load shedding refers
to rejecting requests based on the overall state of the system (database at capacity,
no more worker threads available). By default, many applications, web servers, and
API gateways do not implement rate limiting or load shedding and the corresponding
failure modes may be undefined. Performing load testing can provide insight into the
limits, breaking points, and visible behavior.

It is important to understand if your API gateway and other edge
security tools have “fail open” or “fail closed” polices. Fail open
policies will continue to permit access to your services even if there
are failure conditions. A hypothetical example is that in medical
emergency services, it is more important to serve information
about a patient’s medical history than to authenticate the request.
A fail close policy is when connections will be blocked in failure
conditions. There is no single correct implementation, and the
default should meet your requirements. For example, the major‐
ity of financial APIs would want a fail closed policy by default,
whereas a public weather service may implement a fail open policy.

For the case study, the most appropriate location to implement rate limiting would
be the API gateway. To perform rate limiting, you will typically want to identify
the originator of each request (or set of requests on aggregate). Example properties
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include IP address, geo-location, or a client ID that is sent by the client. You may not
want to limit on an incoming property and instead treat all requests as being equal.

Once a request property has been selected (none, or otherwise), a strategy needs to be
applied to perform the limiting. The most common examples include:

Fixed window
A fixed limit within a period, e.g., 2,400 requests per day.

Sliding window
A limit within the last period, e.g., 100 requests within the last hour.

Token bucket
A set number of total requests are allowed (bucket of tokens) and each request
takes a token when a request is made. The bucket is refilled periodically.

Leaky bucket
Like the Token bucket, however, the rate at which requests are processed is a
fixed rate; this is the leak of the bucket.

You can see rate limiting enforcement in Figure 6-4.

Figure 6-4. Rate limiting example with the API gateway

An example of load shedding is shown in Figure 6-5.

Figure 6-5. Load shedding example with the API gateway

Elevation of Privilege
The final letter “E” in STRIDE is focused on “Elevation of Privilege.” This occurs
when a user or application finds a way to perform a task that is outside the scope
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11 IP allowlists are a literal list of IPs that are allowed to connect to your system. If the IP that connects is not in
that list, then the request is rejected.

of what should be allowed given the current security context—e.g., a user is able
to execute tasks that are only meant to be executed by an administrator. The two
OWASP Security Top 10 that relate to this are:

• Broken Object Level Authorization•
• Broken Function Level Authorization•

These are both focused on enforcing authorization and ensuring that requests to
your API are entitled to perform the operation. This was covered in “Authorization
Enforcement” on page 185.

Security misconfiguration
Security misconfiguration is not limited to one of these STRIDE categories, as mis‐
configuration can happen in a range of places, such as information disclosure, where
a permission is incorrectly assigned, or within denial of service and a rate-limiting
policy is incorrectly set to fail open. Security misconfiguration is focused on ensuring
that the security that you have in place is not incorrectly configured, and it is another
piece that you must think about when evaluating each element of STRIDE for threats.
It is a truism that having misconfigured security can be worse than having no security
at all, as users behave very differently when they believe their actions and data are not
secure. There are certain features of security that you are most likely always going to
want, such as Transport Layer Security (TLS), and others that may be bespoke to an
API or a setup, such as IP allowlisting.11

Within our case study, the API gateway is a key place where security misconfiguration
could have a disastrous effect. Extra attention must be paid to its configuration as the
API gateway is acting as the “front door.”

TLS termination.    TLS will ensure that the traffic that you receive has not been inter‐
cepted and modified. Also, TLS certificates provide information about the owner of a
domain, so you can be confident in who you are contacting. As the API gateway deals
with all incoming traffic, TLS can be enabled here. Having a centralized location to
manage the external TLS certificates for incoming requests is also convenient. This,
in comparison to not using a gateway, where TLS certificates need to be added to each
web server, proxy, and application that is handling request traffic, is more difficult to
manage and more likely prone to error. It is important to use a modern protocol and
strong encryption, and, at the time of writing, using TLS 1.2 or later is recommended
due to known issues with earlier versions of this protocol.12
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12 Most commercial API gateways will by default only allow current versions of TLS to be used, so you will need
to enable weaker versions with known vulnerabilities if this is required.

13 To read a full explanation of CORS, you can take a look at this article by Mozilla.

Cross-Origin Request Sharing (CORS).    CORS is an HTTP-header-based mechanism that
allows a server to indicate any origins (domain, scheme, or port) other than its own
from which a browser should permit loading resources. Supporting CORS is a core
requirement for any modern web browser, and for security reasons, browsers restrict
cross-origin HTTP requests initiated from scripts. CORS works by the web browser
performing “preflight” requests to see if it is allowed to make the desired call. You can
explore this by checking the “Developer Tools” features of a browser. In the “Network
Calls” section, you can typically see the HTTP Options requests; these are commonly
CORS requests.13

Security directive hardening.    A request to an API endpoint can contain an arbitrary
payload, including headers and a data payload. Although all genuine requests will
correspond with your expected contract, an attacker can add unknown, incorrect,
or malformed headers and data in an attempt to gain access or otherwise compro‐
mise your system. Actions need to be taken to mitigate this. In our case study, for
example, you will want to think about implementing an HTTP header allowlist in
the API gateway and removing all invalid HTTP headers. An attacker could send
through additional HTTP headers to the Attendee API like X-Assert-Role=Admin
or X-Impersonate=Admin. The attacker would hope that these headers will not be
removed and are used internally, which may give some extra privileges.

Step 5: Evaluate Threat Risks
When you perform your own threat modeling and end up with a list of threats, it is
important to understand the priority of fixing them. This is what Step 5 of the threat
modeling process is about. To evaluate threats, you can employ a qualitative risk
calculation known as DREAD. Like STRIDE, DREAD was developed at Microsoft.
This methodology provides you with an approach to start adding risk values to
threats. Although DREAD is no longer used by Microsoft, it is still used by many
companies and promoted as a useful way to establish a metric on the risk of a threat.

DREAD has a simple scoring system based on the underlying acronym:

Damage
How bad would an attack be?

Reproducibility
Can an attack be easily reproduced?
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Exploitability
How easy is it to mount a successful attack?

Affected Users
How many users are impacted?

Discoverability
What is the likelihood of this threat being discovered?

Each threat is scored against these DREAD categories, where each category is scored
from 1–10. The risk value assigned to a threat is (Damage + Reproducibility +
Exploitability + Affected User + Discoverability) / 5.

In this example for our case study, you will look at the threat shown in Figure 6-6.
This threat is a DDoS attack against the API gateway where no rate limiting is in
place.

Figure 6-6. Data flow diagram TCP spoofing threat

How to Threat Model | 163



Here is the ranking of this threat:

Damage: 8
There is no rate limiting in place. This is a serious cause for concern as it allows
anyone to send as many requests to the API gateway as they like, and potentially
overload it, making it unusable.

Reproducibility: 8
Calling the API gateway repeatedly with many requests every second will start to
degrade and eventually stop the gateway from working.

Exploitability: 5
The attacker can be outside our network to start attempting to run a DoS attack.
The API gateway first checks the authentication and authorization to enforce the
request. This means that the request must come from one of our legitimate and
known client applications that integrate with our system.

Affected Users: 10
This can have devastating effects because if the gateway is unavailable, it will
affect all our users.

Discoverability: 10
This is trivial to discover for anyone wanting to exploit and cause damage to our
system.

The total score is (8 + 8 + 5 + 10 + 10) / 5 = 8.2.

It is worth noting that the values assigned to the risk are subjective. To get a some‐
what consistent rating, for each category you should define what the values mean—
for example, if all users are affected, the score is 10; if all internal or all external users
are affected, the score is 7; if half of a group is affected, the score is a 3; and if no one
is affected, the score is 0.

For the case study, all the threats identified are collected, scored, and then prioritized.
In this case the highest-priority item is the lack of DDoS protection for the API
gateway. As you identified in this section of the chapter, the mitigation to this issue is
to implement rate limiting and load shedding for within the API gateway.

Other Risk Evaluation Tools
There are other ways to evaluate threats—one of them is DREAD-D (pronounced
Dread minus D). In the DREAD risk calculation, one of the D’s is Discoverability,
which in some cases could be security through obscurity, which is a terrible way
to protect any data. So the Discoverability element is dropped; this why it is called
DREAD-D. Another tool that can be used is the Common Vulnerability Scoring
System (CVSS), which can be used to measure the severity (i.e., the damage) of an
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exploited vulnerability. CVSS is used by NIST to evaluate CVEs, so if you ever look at
a CVE, a CVSS can be found. For example, you can see this looking at the Log4J CVE
and the NIST CVSS.

Step 6: Validation
The sixth and final step of the threat modeling process is to validate that your
security objectives are complete and ask if another review is needed. As part of
threat modeling, you should have evaluated all the threats that are discovered and
identified and taken action to mitigate the risks. You also want to ensure that you
have completed the security objectives that you set out at the beginning of the threat
modeling exercise. Threat modeling should be a recursive process with each run
through the process identifying previously unknown issues. You should also periodi‐
cally and continually run the threat modeling process, especially when adding new
functionality to the system, but also as the external threat environment continually
evolves.

Threat modeling is a skill and it takes time to learn the process itself, and it is also
time-consuming. However, as with any skill, the more it is used and integrated into
your regular workflow, the easier it gets.

Summary
In this chapter you have learned how to conduct a threat modeling exercise, both
against the case study and also how to apply it to your own systems and APIs:

• There are strong financial penalties and reputational damage for failing to secure•
APIs.

• Threat modeling of an API-based system typically begins by creating a data flow•
diagram (DFD). Automated tooling can be used in order to rapidly analyze and
identify potential threats.

• You don’t need to be a security expert to conduct threat modeling, and a key skill•
is “thinking like an attacker.”

• The process of threat modeling includes: identifying your objectives, gathering•
the right information, decomposing the system, identifying threats, evaluating
the risk of those threats, and validating the results and actions.

• The OWASP API Security Top 10 is an excellent resource to understand the•
threats you can expect.

• The STRIDE methodology focuses your action on the threats of spoofing, tam‐•
pering, repudiation, information disclosure, denial of service, and elevation of
privilege.
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• The DREAD methodology can be used to calculate a qualitative risk metric that•
can help you prioritize which threats to mitigate first.

• Within an API-based system, an API gateway can often provide high-level mit‐•
igation to risks that have been identified. However, as systems become more
distributed, you should always consider individual service implementations and
interservice communication.

You have seen a variety of threats that exist and ways to mitigate them. However,
when you are returning data to the API consumer, you want to ensure that they are
who they say they are, and the API consumer can only perform actions that they have
permissions for. To see how you identify who the callee is and what they can do, you
will take a deeper dive into authentication and authorization in the next chapter.
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CHAPTER 7

API Authentication and Authorization

In the previous chapter you learned how to threat model API-based systems and
about the OWASP API Security Top 10. The Attendee API is ready to receive traffic
from the outside world; however, how exactly is the consumer of the API identified?
In this chapter we are going to explore authentication and authorization for APIs.
Authentication tells us who the callee is and authorization tells us what they are
allowed to do.

We will begin by highlighting what authentication and authorization is for APIs. This
leads to the importance of securing APIs and the potential limitations with using
API keys and tokens. OAuth2 is a token-based authorization framework introduced
in 2012 and has rapidly become the industry standard for securing APIs and deter‐
mining what actions an application can perform against an API. A large part of this
chapter will focus on OAuth2 and the range of security approaches offered for both
end users and system-based interactions. Consumers of APIs will sometimes need
to know details of the user they are acting on behalf of—to show how this can be
achieved we will introduce OIDC.

The chapter will illustrate the different approaches to security by looking to prepare
the Attendee API for external usage by the CFP system.

Authentication
Authentication is the act of verifying an identity. For the case of a user, the most
traditional method is that the user presents their credentials in the form of a user‐
name and the password. It is now becoming more common for Multi-Factor Authen‐
tication (MFA) to be part of a standard login flow. MFA is useful to give higher
levels of assurance that the user is who they say they are. For machine-to-machine
authentication, credentials can be in the form of keys or certificates. By verifying the
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identity of the presented credentials, we know who is trying to communicate with our
systems.

Let’s look at this in the context of our Attendee service. The Attendee API contains
personally identifiable information (PII) such as name and email address, which a
user expects to be protected. In order to protect this information, the first step is to
challenge and identify the caller of the API. Asserting this identity is called authenti‐
cation. Once the caller is authenticated, the Attendee API establishes what the caller is
allowed to access and retrieve: this type of entitlement checking is authorization.

Figure 7-1 demonstrates the interaction with the Attendee API. The mobile applica‐
tion connects via the API gateway and queries the Attendee API. Another interaction
follows a similar path from the CFP system, however the CFP system is owned by
a third party. Let’s consider the options that we have for authenticating an end user
(the mobile application user and the CFP system speakers) and a system-to-system
interaction (the CFP system).

Figure 7-1. Securing our case study
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End-User Authentication with Tokens
The mobile application is acting on behalf of the attendee and retrieves and displays
information about the attendees. In token-based authentication, the user would enter
their username and password, which is exchanged for a token. The token issued
depends on the implementation, but in the simplest case it could be an opaque string.
The token is sent in the REST request as part of the Authentication Bearer header.
Tokens are sensitive and it is important that the REST request is sent over HTTPS
to secure the information in transit. Once a token is received as part of a request, it
is inspected and checked to confirm the token’s validity. Figure 7-2 demonstrates a
historically typical token lookup process where the token is stored in a database.

Figure 7-2. Server-side token lookup verification process

The token should have a limited lifetime—for example, an hour—and after the token
expires, the user would need to obtain a new token. Tokens have the advantage that
long-lived credentials, such as passwords, are not going across the network for every
request to access resources.

Things might seem ideal on the surface with tokens; however, a major disadvantage
is the user having to enter the username and password into the application that
is making calls to an API to retrieve their data. Also, when a token is placed into
storage, looking up the token to check validity each time can be a performance
concern and would need to be mitigated. What would be preferable is to use a token
that has integrity and can be validated in-process.
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1 If you do not know what HTTP Basic is, refer to the spec rfc7617.

2 The request header is either a custom header (e.g., X-API-KEY: My_super_secret_API_Key) or the authoriza‐
tion header.

3 Google has a good piece on this here.

It is possible to access APIs using HTTP Basic, however, if a third-
party application asks to access an API on your behalf, it means
handing over your username and password.1 We recommend that
you do not allow HTTP Basic to be used to access your APIs.

System-to-System Authentication
In some situations an end user is not involved in the interaction and system-to-
system communication is required. One option would be to use an API key, which
does not conform to any particular standard. Whenever you do use an API key,
it should be secure, meaning that it should be generated using a cryptographically
secure random number generator and of an unguessable length. Typically API keys
are 32-character-length strings (256 bits). If the API key is guessable (short and
deterministic), this creates a vulnerability of a client being hacked. To access an API
with an API key, you simply add the API key into a request header and send it to the
endpoint.2 The API key is associated with an application or project, so it is possible
to identify the requester.3 Using an API key is very similar to using a password.
Figure 7-3 demonstrates an example of using an API key as part of a request.

Figure 7-3. External CFP system calling Attendee API with an API key
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Why You Shouldn’t Mix Keys and Users
Consider the scenario where a speaker is using the CFP system, owned by a third
party, and the CFP is requesting an update to the email address associated with that
user’s data. Just because the CFP system is using an API key and can be identified
does not mean that this third-party system should be able to assert who the end
user is or who they are acting on behalf of. This puts trust of the entire system in
the hands of the third party. A solution to this would be that the CFP system also
passes the user’s username and password (using HTTP Basic) along with the API key
to allow the Attendee service to authenticate the user. However, as we have already
warned, this means that the user must hand their username and password for the
Attendee service to the CFP system, which is undesirable. The ideal scenario would
be a situation where the CFP system can call the Attendee service, but any request
performed on behalf of a user by the CFP system does not require sharing credentials
and is done with the user’s specific approval. The solution to this problem is in
essence the use of OAuth2.

OAuth2
OAuth2 is a token-based authorization framework and has been around since 2012.
It is the replacement for OAuth, which is still around—however, it is used in very
few places. OAuth2 allows a user to consent that a third-party application can access
their data on their behalf. The consent that the user gives is the authorization—they
are allowing or denying the access. OAuth2 removes the need for a user to hand over
their credentials to the third party, which gives the user control over their data. This
makes OAuth2 appealing as it supports the challenges faced in the previous section.

In order to explore OAuth2 further, it is important to first understand the different
roles within the OAuth2 specification. The definitions have been taken directly from
the OAuth2 specification:

Resource Owner
An entity capable of granting access to a protected resource. When the resource
owner is a person, it is referred to as an end-user.

Authorization Server
The server issuing access tokens to the client after successfully authenticating
the resource owner and obtaining authorization. Most identity providers, such as
Google or Auth0, will be OAuth2 authorization servers.
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Client
An application making protected resource requests on behalf of the resource
owner and with its authorization.

Resource Server
The server hosting the protected resources, capable of accepting and responding
to protected resource requests using access tokens.

Authorization Server Role with API Interactions
The authorization server has two endpoints:

• The authorization endpoint is used when a resource owner needs to authorize•
access to protected resources.

• The token endpoint is used by the client to get an access token.•

If the Attendee service was called directly by the client, then the Attendee service
would be the resource server as it is hosting protected resources. However, a resource
server does not need to be an individual application; it could represent a complete
system. One popular pattern is to use the API gateway as a resource server, as shown
in Figure 7-4. The two clients, the mobile application and the CFP system, are calling
the Attendee service via an API gateway. There could be multiple services behind the
API gateway but for the client the API gateway would still be the resource server as
it is hosting the protected resources. The two resource owners in this case are the
attendees using the mobile app and the speakers using the CFP system.

Figure 7-4. API gateway as the resource server
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4 An email or username is normally not a good choice as users modify these over time. Having a consistent
identifier is simpler to manage.

JSON Web Tokens (JWT)
JavaScript Object Notation (JSON) Web Tokens are an RFC standardized token
format that is the de facto standard token for OAuth2. A JSON Web Token, also
known as a JWT (pronounced “jot”), consists of claims and these claims have
associated values. JWTs are structured and encoded using standards to ensure the
token is unmodifiable and additionally can be encrypted. They are especially useful
in the transfer of information in “space constrained environments such as HTTP
Authorization headers”.

Here is an example JWT:

{
    "iss": "http://mastering-api/",
    "sub": "18f913b1-7a9d-47e6-a062-5381d1e21ffa",
    "aud": "Attendee-Service",
    "exp": 1618146900,
    "nbf": 1618144200,
    "iat": 1618144200,
    "jti": "4d13ba71-54e4-4583-9458-562cbf0ba4e4"
}

In this example the claims are iss, sub, aud, exp, nbf, iat and jti—these are all
reserved claims in the JWT RFC. Reserved claims have a special meaning. They are
not mandatory in a token, however they offer a starting point for a minimum amount
of information. Looking at our example token, let’s list what the claim abbreviations
are and how they are typically used:

iss (Issuer)
The authority that issued the token. This is normally an identity provider (e.g.,
Google or Auth0).

sub (Subject)
A unique identifier to identify the principal of the JWT. In the case of the mobile
application that is acting on behalf of the user, this would be attendee (e.g.,
Matthew Auburn); if this was a server-to-server connection, this may be the
application (e.g., the CFP System).4 The subject value does not follow any format,
and if you are defining what the subject should be, you must decide if it should
be unique within your system or universally unique (e.g., using a UUID).

aud (Audience)
Who this token is intended for.
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exp (Expiration time)
When the token expires (45 minutes after being issued in this case).

nbf (Not before)
Token should not be used before this time (same time as the issued time in this
case).

iat (Issued at)
The time the token was issued.

jti (JWT ID)
A unique identifier for the JWT.

Tokens can contain more information such as preferred name,
email of the user, claims about the issuing party, and which appli‐
cation requested the token. For high-security APIs it is common
that the authentication method to the authorization server is a
claim, which can be used to check if MFA was used by the resource
owner to authenticate themselves.

Encoding and verifying JSON Web Tokens
There are two popular encoding mechanisms for JWT, which have their own format:

• JSON Web Signatures (JWS) provides integrity to a JWT. The contents of the•
token are visible to anyone who receives the token; however, the claims are
digitally signed, which ensures that if the contents of the token are changed, the
token is immediately invalid.

• JSON Web Encryption (JWE) provides integrity but is also encrypted. This•
means that the contents of the token cannot be examined.

Generally, when JWT is used, that implies JWT using JWS, and
Encrypted JWT means JWT using JWE.

The most common mechanism used is JWS, where the digital signing is performed
using a private key. The public key is used by the receiver of the token to validate that
the token was signed by the specific issuing party. The public key is freely shared with
any party that needs to verify the integrity of the token.
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If you’re using JWT with JWS, you should not insert confidential
data into the claim values. JWS provides integrity to the claims;
however, anyone who has the JWT can read the claims. To ensure
the JWT can’t be read, use JWE.

JWTs are a great option for a token format. API services consume the JWT, validate
it by verifying the signature, and do not need to look up a token in a database. As
the access token will be from an authorization server that is (most likely) under your
control, you can add all the information you expect/require to your JWT.

When the JWT is received, there are multiple parts to verify. First, the signature is
checked to confirm that it was issued from the expected party and has not been
modified or tampered with. Then other claims in the token should be validated, such
as checking that the token has not expired (exp claim) or that the token is not used
before it is allowed (nbf claim). All tokens that are issued should be short-lived; long-
lived tokens are a risk if they are lost or stolen. On the topic of long-lived assertions,
the NIST (National Institute of Standards and Technology) Digital Guidelines state:

Long-lived assertions have a greater risk of being stolen or replayed; a short assertion
lifetime mitigates this risk.

There is no official standard for how long a short-lived or long-lived token should
be valid for. The typical suggested lifetime of a short-lived token is between 1 and 60
minutes, and a long-lived token is from one year to ten years. It is suggested that you
keep the lifetime of tokens as short as possible.

There are many positives to using JWTs for an access token. Now let’s look at their
usage within OAuth2.

Terminology and Mechanisms of OAuth2 Grants
OAuth2 is designed to be extensible. The official OAuth2 spec was released in 2012
with four grants, and since then additional grants and modifications have been
approved to extend its usage. This is made possible as OAuth2 presents an abstract
protocol, shown in Figure 7-5:

A. The client requests authorization from the resource owner.A.
B. The resource owner will grant or deny the client access to their resources.B.
C. The client will ask for an access token from the authorization server for theC.

authorization it has been granted.
D. The authorization server will issue an access token if the client has been author‐D.

ized by the resource owner.
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E. The client makes a request for the resource to the resource server, which in ourE.
case is the API. The request will send the access token as part of the request.

F. The resource server will return the resource if the access token is valid.F.

Figure 7-5. Abstract protocol flow

This abstract protocol about how OAuth2 grants should work highlights that the
resource owner has control over their own resources. The client is requesting author‐
ization from the resource owner—i.e., “can I (the application) access your resources
on your behalf?” The way in which authorization is given is not important. What
is essential is that the resource owner has the opportunity to grant or deny access.
When requesting a resource from the resource server (i.e., calling the API), how the
client obtained the access token does not matter. As long as the request contains a
valid access token, the resource server will issue the resource. Each step is isolated
and does not require information about the previous step. This is why there are
different grants for different scenarios, as they have their own implementation to
ensure that these steps are secure for that environment.

ADR Guideline: Should I Consider Using OAuth2?
It is important that you understand the reasons to adopt using OAuth2 and whether
it is even the right choice for you. To help with this decision, use this ADR Guideline
(see Table 7-1) to help you determine what is right for you and the conversations you
may want to have.
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5 A typical scenario is when you are using LinkedIn and LinkedIn asks to access your GMail contacts. LinkedIn
redirects you to Google and you log in to your Google account. You are then presented with a message saying
“LinkedIn would like to access your email contacts.” After you accept, LinkedIn can access your emails.

Table 7-1. ADR Guideline: Do I need to use OAuth2?
Decision Should OAuth2 be used or is there another standard for authentication and authorization that is

preferred for the operating environment?

Discussion Points When you start working with APIs, you have the opportunity to decide or influence the security
mechanisms for them:

• Examine the current security requirements and how things might potentially change. For example, are•
APIs just used within a control plane or are they also used outside of a control plane/potentially with
third parties?

• What security model are you expected to support? Have external integrators requested that you use a•
certain security model?

• Do you need to support multiple authentication and authorization models? This is important if you are•
looking to migrate from an existing authentication model to another.

Recommendations Using OAuth2 will provide the maximum compatibility with other API users. It is an industry standard
with documentation and client libraries that ease integration. OAuth2 supports both the end user and
system-to-system cases.

Authorization Code Grant
The Authorization Code Grant (Auth Code Grant) is an implementation of an
OAuth2 grant; it is an implementation of the abstract protocol that you saw previ‐
ously in Figure 7-5. This is a most well-known grant, and you will likely have used it
without realizing you did.5 The typical use case for the Authorization Code Grant is a
website backed by a server, which is not publicly available to the internet (i.e., it can
protect a secret). A client application that can protect a secret is called a confidential
client. Figure 7-6 describes in more detail how the grant works:

A. The client application directs the web browser (the User Agent in the diagramA.
is a web browser) to an authorization server. The redirect to the authorization
server will include the identification of the client (a client ID), and as part of the
redirect it also has what grant is being used (in this case the Authorization Code
Grant is known as code).

B. The authorization server asks the resource owner (end user) to identify them‐B.
selves. The authorization server needs to know who the resource owner is, so
the resource owner will need to authenticate to the authorization server. The
authorization server is then able to get consent from the resource owner if they
grant authorization to the client application. (Steps A and B of the Authorization
Code Grant are all about the authorization request; this is shown as a single step
(A) in the abstract protocol from Figure 7-5.)
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C. Assuming authorization is granted, an authorization code is passed to the clientC.
application, via the User Agent. (This step matches to Step B of the abstract
protocol where it shows the authorization grant returned.)

D. The client then requests an access token from the authorization server presentingD.
the authorization code. The authorization server cannot just accept the authori‐
zation code from anyone. The client application must authenticate itself to the
authorization server by using a secret that is known to the authorization server
and the client application. (In the abstract protocol this is Step C where the
authorization grant is sent to the authorization server to be exchanged.)

E. If the client application successfully authenticates and presents a valid authoriza‐E.
tion code, it is granted an access token. (This step lines up with Step D in the
abstract protocol where the access token is issued.)

Figure 7-6. Authorization Code Grant

This solution works really well and was the default model for web applications.
However, the world of websites has evolved, and Single Page Application (SPAs) now
exist. SPA websites are JavaScript-based and run in the user’s browser, which means
that the source code is fully available for the user to look at. It means also that an
OAuth2 client SPA cannot protect a secret and is known as a public client, so using
Auth Code Grant as it stands is not possible.

Authorization Code Grant (+ PKCE)
This is when you would use Authorization Code Grant + PKCE, which allows you
to use OAuth2 for SPA applications. PKCE stands for Proof Key for Code Exchange
and is used to mitigate interception attacks. Within the Auth Code Grant + PKCE
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grant, two additional parameters are needed: one for the authorization request,
which is the code_challenge, and one for the access token request, which is the
code_verifier. The code_verifier is a cryptographically random string generated
by the client, and the code_challenge is the hashed value of the code_verifier.
When the client application initiates the request to the authorization server, it sends
the code_challenge, and when an access token is requested, the authorization code
is presented along with the code_verifier. The authorization server can hash the
code_verifier to check that it matches the code_challenge used to initiate the
token request. This extension makes the grant more secure as only the original client
should have the code_verifier; this prevents attacks where an authorization code
could be intercepted and swapped for an access token. We can see this grant in action
in Figure 7-7.

A. The authorization request is made and the code_verifier is sent to the author‐A.
ization server. In the diagram t(code_verifier) is the transformation of the
code_verifier to the code_challenge and t_m is the transformation method (as
described previously, this is a hash).

B. Like in the Authorization Code Grant, an authorization code is returned.B.
C. The client requests the access token by sending the authorization request, whichC.

is the authorization code and the code_verifier. No client secret is sent as this is
a public client.

D. The access token is then issued to the client application.D.

Figure 7-7. Authorization Code Grant + PKCE

You may be looking at these steps and wondering how this maps back to the Authori‐
zation Code Grant without PKCE. The diagram looks different from Figure 7-6, but
the only real difference is the first step, Step A. In Step A of Figure 7-7, it is all about
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the authorization request (like in the abstract protocol Step A), and the process will be
the same as in the Authorization Code Grant in Steps A and B.

PKCE must be used for public clients. However, you can use PKCE
for confidential clients as well as for additional protection.

The Authorization Code Grant and its PKCE extension will work in the most com‐
mon scenarios for your public and confidential clients when you have an end user in
your case.

Case Study: Accessing Attendee API with the Authorization Code Grant
There are two client applications for accessing the Attendee API. Both of these
applications will use the Authorization Code Grant to access the Attendee API on
behalf of users (the resource owners). The External CFP system is a confidential
client. The client can maintain a secret, which means that Authorization Code Grant
can be used. The mobile application is a public client, and it is not able to maintain a
secret, therefore Authorization Code Grant + PKCE must be used. The steps for the
External CFP system and the mobile application requesting an access token and using
them to access the Attendee service are shown in Figure 7-8. This also highlights that
using PKCE does not change the high-level steps taken or the user’s journey.

Figure 7-8. Authorization Code Grant applied to our case study
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6 If you want to look further at adding even more security to the client application getting access tokens, see
RFC8705. This specification uses Mutual TLS instead of secret strings to obtain access tokens.

Refresh Tokens
It is good practice to issue tokens that are short-lived; however, asking a user to
reenter their username and password would soon become a jarring experience. A
refresh token is a long-lived token used by the client to request additional access
tokens when the previous token expires. Refresh tokens are requested as part of the
authorization request, meaning the end user is not involved in requesting further
access tokens. As part of the latest security best practices, the detection of a refresh
token used twice immediately revokes the active refresh token. Refresh tokens are an
additional credential and long-lived, so it is important that these are kept secure and
not leaked. If at any point a client needs to be denied access, including if the resource
owner does not want the client to have further access to their resources, the refresh
token can be revoked. The next time the client application requests a new access
token (which are short-lived) they will be stopped. This does mean that there can be a
window when a client has a valid access token but should not have access. This is why
it is important to have short-lived tokens.

Client Credentials Grant
The client for the Client Credentials Grant is a confidential client as it needs to
maintain a secret. As this is for machine-to-machine communication, the connection
is set up in advance and the access (what the client is authorized to do) should be
pre-arranged.

The process of the client obtaining an access token is very straightforward as shown
in Figure 7-9:6

A. The client application authenticates to the authorization server and requestsA.
an access token. The client also identifies the grant being used, which is
client_credentials.

B. The authorization server returns an access token if the client application success‐B.
fully authenticates.

Figure 7-9. Client Credentials Grant
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7 It is fine to have a client registered for multiple grant types; the subject of the callee will be different depending
on the grant used. As we see here in the client credentials, the subject is the client making the request and not
on behalf of a resource owner.

There are no additional steps as there is no resource owner to give permission. The
client is acting on its own behalf so only is required to identify itself.

Case Study: Accessing Attendee API from the CFP system with Client Credentials Grant
The External CFP system produces a report every three months to show how many
attendees go on to submit talks and become speakers. This report generation is not
on behalf of an attendee but instead happens for the External CFP system. The client
(External CFP system) is registered into the authorization server.7 In the Attendee
service the client is added into a list of clients that can access the service and is
configured to be able to read information about attendees and query which users
have submitted talks—this is the pre-arranged access. When the client wants to access
the Attendee API, it will request an access token from the authorization server and
then use the access token when it calls the Attendee API.

You have now seen how to use OAuth2 for machine-to-machine communication, but
what if your case has not been covered so far?

Refresh tokens are not used with the Client Credentials Grant;
instead, the client requests a new access token.

Additional OAuth2 Grants
There are more OAuth2 grants available than just the previous two discussed. The
other standardized grants available are listed here, but we will not explore them in
further detail:

• The Device Authorization Grant is used for devices that have limited input or•
lack a browser. This makes it useful for IoT devices, such as your smart fridge or
a Raspberry Pi project.

• Implicit Grant was used commonly for SPAs, but it has been replaced by the•
Authorization Code Grant + PKCE.

• Resource Owner Password Credentials Grant was historically used as a stepping•
stone from HTTP Basic to get client applications off the ground using OAuth2. It
is recommended not to use this grant.
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ADR Guideline: Choosing Which OAuth2 Grants to Support
As we have seen, there are many OAuth2 grants. It is important to pick the grant
that is right for your case or the grants you want to support. The ADR Guideline
in Table 7-2 provides discussion points and considerations you should think about
before picking your grant.

Table 7-2. ADR Guideline: Which OAuth2 Grants
Decision Which OAuth2 Grants should be supported?

Discussion Points Determine what types of clients will be interacting with your APIs:

• Do you need to support IoT devices and the Device Authorization Grant?•
• Do you have older clients that are SPAs that only support the Implicit Grant?•
• Should you outright forbid the use of the Resource Owner Password Credential Grant?•

If you already have a security model for authentication and authorization, should you move to OAuth2?

• Which grant best represents your interaction model?•
• Will the clients be able to migrate to the grant? If they are under your control or you have a small•

number of third parties, this will be significantly easier to start getting third parties to migrate.
• Should all new onboarded clients use the new OAuth2 Grant?•

Recommendations We recommend that you use OAuth2 and use only the grants you need and add more if required. If you
have a security model in place that works and many paying customers, it may not be feasible to force
them to migrate over to use OAuth2. However, you may have to evolve your security architecture to use
OAuth2 to be more standard, as this can also be a request from third parties so they do not need to
build a custom interaction for your security model. Starting with the Client Credentials Grant is often the
easiest way to introduce OAuth2 into an API system.

OAuth2 Scopes
Scopes are an important mechanism in OAuth2 and are effectively used to limit the
access of a client acting on behalf of a user. When a user first authenticates, the end
user receives a consent screen, which will state what the client is requesting access to
do. For example, “Application would like to read appointments in your calendar” and
“Application would like to book meetings in your calendar.” The end user is in control
and can restrict what actions the client can perform on their behalf.

Case Study: Applying OAuth2 scopes to the Attendee API
Let’s explore a practical example to show scopes for modeling attendees using some
endpoints. To help with this example, let’s imagine that the legacy conference system
has two endpoints exposed as well:
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Attendee API
• GET – /attendees—Get a list of attendees•
• GET – /attendees/{attendee_id}—Get details of an attendee•
• POST – /attendees—Register a new attendee•
• PUT – /attendees/{attendee_id}—Update attendee information•

Legacy Conference API
• GET – /conferences—Get a list of conferences•
• POST – /conferences—Create a new conference•

The External CFP application needs to only access the Attendee API, so as a resource
owner you do not want the External CFP to access conference information. There
should be a separation where you can authorize the External CFP system to just the
Attendee API.

Two scopes are created: the Attendee scope and a Conference scope. This is shown as
the HTTP Method – endpoint – scope.

Attendee API
• GET – /attendees – Attendee•
• GET – /attendees/{attendee_id} – Attendee•
• POST – /attendees – Attendee•
• PUT – /attendees/{attendee_id – Attendee•

Legacy Conference API
• GET – /conferences – Conference•
• POST – /conferences – Conference•

This achieves the separation of conferences and attendees, however it is possible to
take this a step further and differentiate between read and write operations:

Attendee API
• GET – /attendees – AttendeeRead•
• GET – /attendees/{attendee_id} – AttendeeRead•
• POST – /attendees – AttendeeAccount•
• PUT – /attendees{attendee_id} – AttendeeAccount•

Scopes don’t have a defined standard, however they are typically used as a coarse-
grained separation within an API. Scopes must make sense to the end user, as
they are going to need to consent to their usage. Once the resource owner grants
authorization to a resource, this information needs to be used by the resource server
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8 This may be an array—comma-separated, or like this case, space separated.

to enforce this. When using access tokens in a JWT format, a claim is normally added
to the JWT; e.g., "scope": "AttendeeRead AttendeeAccount.8 This will have the list
of all the scopes that have been authorized. Scopes are not mandatory for OAuth2,
though it is very useful and something that you should consider for coarse-grained
authorization.

Authorization Enforcement
Authorization needs to be enforced as this is fundamental in API security. Two of
the most common security authorization issues listed in the OWASP API Security
Top 10 are Broken Object Level Authorization (BOLA) and Broken Function Level
Authorization. BOLA is when a user is able to request information for an object that
they should not have access to, often discovered by tampering with a resource ID.
Broken Function Level Authorization is when the user can perform tasks they are
not authorized to do, for example executing an administration-only endpoint as a
standard user.

Authorization is typically based on some sort of entitlements. This is popularly
enforced using Role Based Access Control (RBAC). Though the exact entitlement
choice is a detail, some sort of access control should exist and it is important that
every endpoint has an authorization check before fulfilling the request.

When you look at authorization with OAuth2, you must keep in mind that scopes are
used to specify what a resource owner has stated regarding the range of actions a cli‐
ent can perform. This does not mean that the client should have access to all end-user
data. For the Attendee service there could be different actions that are possible, such
as admin rights to manage attendees and view-only rights on attendees. An attendee
may only have permission to read the attendees’ profile description; however, a client
may ask for permission to read attendees’ information and to manage attendees. A
user may grant access to the client to perform these tasks on their behalf; however,
the user themself may not have access. This overlap of authorization is highlighted in
Figure 7-10.
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Figure 7-10. Venn of authorization

Scopes are useful for an API gateway to enforce scope authorization and to reject
requests when a client does not have the correct scope to access an API.

Introducing OIDC
OAuth2 provides a mechanism for the client to access APIs using authentication and
authorization. A common requirement is for the client to know the identity of the
resource owner. Consider the External CFP system. It will need to store data about
the speaker, but OAuth2 grants do not provide a way to obtain the identity of the end
user.

This is the purpose of OpenID Connect (OIDC); it provides an identity layer. This
layer builds on top of OAuth2, by having the OAuth2 authorization server implement
additional functionality. The functionality required turns the OAuth2 authorization
server into an OpenID provider as well. It is now possible for a client to request
information about the user by using a special scope called openid. This scope is
requested along with any the scopes required for any access tokens. Using the openid
scope provides the client with an ID token, which is a JWT that contains claims about
the user.

The ID token returned when using just the openid scope contains a very limited
amount of information about the user. The only claim that identifies the user is the
subject claim, which is a unique ID of the user and must never change (usually this is
a UUID). Having just a unique ID about the user is not usually enough for the client.
That is why OIDC specifies additional scopes that can be added to the request to get
information in the ID token:
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profile

name, family_name, given_name, middle_name, nickname, preferred_username,
profile, picture, website, gender, birthdate, zoneinfo, locale, and
updated_at

email

email and email_verified

address

address

phone

phone_number and phone_number_verified

You can end up with a very rich ID token that contains a lot of information about
the user. These scopes are used in the context of ID tokens—you would not see these
scopes in your access token as you saw in “OAuth2 Scopes” on page 183.

Three flows are declared by OIDC: Authorization Code Flow, Implicit Flow, and
Hybrid Flow. The OIDC specification calls steps to acquire an ID token “flows.” The
recommendation is to use the Authorization Code Flow for the same reasons as the
Authorization Code Grant (+ PKCE)—it is more secure.

Many people think that OAuth2 and OIDC are the same thing and will refer to OIDC
being used to access APIs. The reality is that they are not the same; they are two
distinct things. OIDC has its role, providing user identity to clients; however, it does
not provide access to APIs. If OIDC is something that you need, then you should
be sure that your identity provider has support for it. Do not try to build your own
identity layer.

Never substitute ID tokens for access tokens. This is very danger‐
ous practice as ID tokens are not intended for this purpose. They
are long-lived tokens with the purpose of providing information
about the user to a client. They are not for accessing resources.

SAML 2.0
In enterprise environments it is common to use SAML 2.0, often referred to as
just SAML. SAML (Security Assertion Markup Language) is an open standard that
transfers assertions. It is often used for single sign on, and the assertions that are
transferred are user identities. SAML is popular within the enterprise world as it is
used to allow employees to sign on to external applications. SAML is not aligned
to be used by APIs in its raw form. However, there does exist an OAuth2 exten‐
sion: Security Assertion Markup Language (SAML) 2.0 Profile for OAuth 2.0 Client
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Authentication and Authorization Grants. This extension allows a client to request an
access token using SAML, assuming that the authorization server has implemented
the functionality. You should be aware of this if SAML is something that you need to
use as part of a migration to OAuth2.

Summary
In this chapter we have explored the importance of securing APIs and robust indus‐
try standards to achieve this:

• Authentication establishes the identity of the resource owner, which in•
APIs is either an end user or an application performing system-to-system
communication.

• OAuth2 is the de facto standard for securing APIs and often leverages JWT as•
part of the bearer header. JWT tokens are often encoded and signed to ensure
they are tamper free.

• Different OAuth2 grants support different scenarios. The most common are the•
Authorization Code Grant + PKCE and the Client Credentials Grant.

• Refresh tokens help to smooth out the end-user experience of needing to keep•
asking the user to enter a username and password.

• OAuth2 scopes help to provide coarse-grained authorization and allow the end•
user to configure the access of a client.

• OIDC is used when the client requires information about the end user. OIDC•
provides basic information about the authenticated user and can optionally pro‐
vide additional details.

Fundamentally, you should now understand how you can identify an API callee and
how you can secure your own APIs. However, this is not the end of the journey, as the
majority of software architectures don’t stay still. You will learn about evolutionary
architecture with APIs in the next chapter.
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PART IV

Evolutionary Architecture with APIs

This section explores how to evolve the architecture of a system or series of systems
using APIs. This includes evolving existing legacy applications toward API-based,
service-oriented architectures, and also using API infrastructure for evolving or
replatforming a system for effective deployment into a cloud environment.

Chapter 8 explores redesigning monolithic applications toward an API-driven
architecture.

In Chapter 9, you will learn how to use API infrastructure to evolve your current
systems toward cloud platforms.

Chapter 10 provides a summary of key lessons you have learned throughout the
book. This chapter also presents ways in which you can continue to evolve the case
study and advance your learning about API architecture.





CHAPTER 8

Redesigning Applications to
API-Driven Architectures

Now that you have a solid grasp of API operations and security, you will explore
how APIs can be used to evolve and augment existing applications. In Building Evolu‐
tionary Architectures (O’Reilly), the authors discuss how an evolutionary architecture
supports guided, incremental changes, across multiple dimensions. Whether you
want to adopt an evolutionary architecture as defined in that book or not, the reality
is that almost every successful system will have to evolve over time to meet new
user requirements or to react to a changing environment. It is rare for a business
or organization not to change its products based on customer feedback or changing
market conditions. Equally, it is uncommon for a long-running system not to be
impacted by changes in infrastructure (e.g., hardware failing and becoming obsolete),
the underlying application frameworks, or a third-party service.

APIs are the natural interfaces, abstractions, and (encapsulated) entry points to and
within a system, and as such can be instrumental in supporting an evolutionary
architecture. In this chapter you will learn about why change is needed, how to design
for this, and where to implement useful patterns.

Although you may not have realized it, you have been applying many of the skills dis‐
cussed in this chapter throughout the conference system case study. We recommend
that you think about the evolution of the case study as you read this chapter, and you
will review the final end state of the conference system architecture in “Case Study: A
Look Back on Your Journey” on page 225.
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Why Use APIs to Evolve a System?
Changing software in a safe manner can be difficult. This challenge is further
compounded if the software has any of these three characteristics: a large number
of users, inherent complexity in the design, or tight integration with a number
of other systems. And here’s the kicker: these characteristics are almost inevitable
within a software system that is well adopted, meets user needs, and is a key part
of an organization’s workflow. The majority of “legacy” systems have also evolved
in a somewhat ad hoc manner, with many temporary workarounds, quick fixes, or
shortcuts becoming an embedded part of the system design.

As an architect, APIs can help you evolve a system. An API can be a boundary to a
module or component, and this makes an API a natural point of leverage when trying
to ensure a system is highly cohesive and loosely coupled.

Creating Useful Abstractions: Increasing Cohesion
Cohesion refers to the degree to which the elements inside a system belong together.
Implementing APIs and systems with high cohesion enables the easier evolution of
both the API provider and consumer. As a provider, you can alter the internals of
your service, such as changing algorithms, refactoring code to improve performance,
or changing datastores, and you only have to avoid modifying the external interface
in a way that breaks backward compatibility. As a consumer, you can be more confi‐
dent in modifying and scaling your service, with clear and understandable integration
points into the existing API.

Closely related to designing cohesive APIs is thinking critically about the abstractions
you are creating. We can all understand and appreciate the differences in abstractions
for controlling different vehicles. With a car, you typically interact with the dash‐
board, pedals, and steering wheel. When operating a space shuttle, the control panel
contains many more fine-grained dashboards, control sticks, and buttons. The space
shuttle controls are cohesive to the task at hand, but the level of control and complex‐
ity offered here would not be appropriate when designing a car. Hopefully, you can
see the analogy with API design. It can be tempting to design the equivalent of a
space shuttle control panel—particularly in relation to the goal of “future-proofing”
APIs—when in reality, your underlying business service is analogous to driving a car.
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Aim for APIs with High Cohesion

APIs that are highly cohesive are easier for an architect to under‐
stand, build mental models of, and reason about. Cohesive APIs
also don’t violate the principle of least surprise. Highly cohesive
APIs can also become focused points of change within a system.
For example, a series of related changes may only require the
modification of a single API, versus the modification of a series of
APIs required when modifying a system with low cohesion. Always
strive for and evolve toward highly cohesive systems.

As a counterexample of high cohesion within the case study, imagine if you created
a “utils” API that exposed a collection of convenience functions that could be used
across all of the conference entities. This could easily lead to a situation where a
change in the code behind one API, such as the Attendee API, requires that another
utility API also be updated. Unless you are the original author of the APIs, or you
have very good documentation and tests, it could be easy to miss this and leave the
system with inconsistent or incompatible behavior.

There Are Many Types of Cohesion to Consider!
Although cohesion often gets talked about as if this could be measured in one
dimension, there are several types of cohesion that architects should be aware of. For
example, systems can be coupled in a number of ways:

• Functional cohesion•
• Sequential cohesion•
• Communicational cohesion•
• Procedural cohesion•
• Temporal cohesion•
• Logical cohesion•
• Coincidental cohesion•

Joseph Ingeno’s Software Architect’s Handbook (Packt Publishing) provides a more
comprehensive overview for readers who want to know more.

Of course, cohesion is only one property to strive for when designing and evolving
systems. Let’s now look at cohesion’s close relation in software: coupling.
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Clarifying Domain Boundaries: Promoting Loose Coupling
A loosely coupled system has two properties. First, components are weakly associated
(have breakable relationships) with each other, which means that changes in one
component do not affect the functionality or performance of another component.
And second, each of the system’s components has little or no knowledge of the
definitions of other separate components. Components in a loosely coupled system
can be replaced with alternative implementations that provide the same services
and are less constrained to the same platform, language, operating system, or build
environment.

Designing or refactoring toward a loosely coupled API will enable providers and
consumers to evolve their systems more effectively. As a provider, a loosely coupled
API will enable the maximum adoption of your service across the organization,
both from the perspectives of ease of integration and supporting ease of change.
And for consumers, an API that is loosely coupled will support easier swapping of
components (potentially even at runtime), allow easier testing, and reduce the cost of
managing dependencies.

Loose Coupling Enables Easier Mocking and Virtualizing When Testing!

An API designed with loose coupling in mind will typically be
much easier to mock or virtualize when performing integration
and end-to-end testing. A loosely coupled API enables the provider
implementation to be easily swapped. When testing a consumer,
the provider API implementation can be swapped for a simple stub
or virtual service that returns the required response.
In comparison, it is often not possible to mock or stub an API that
is highly coupled. Instead you will find yourself running the API
provider as part of your test set or attempting to use a lightweight
(less functional) or embedded version of the service.

Case Study: Establishing Attendee Domain Boundaries
As an example with the conference system use case, imagine if our Attendee service
was highly coupled with the underlying datastore and exposed data in the format
of the underlying data schema. If, as the service provider, you wanted to swap out
the datastore to something different, you have two choices. You can implement a
new system to adapt any data created or retrieved between the old and new format,
which will likely require complicated and error-prone translation code. Or, you can
modify your external API and get all of your consumers to adopt this—and don’t
underestimate the difficulty in doing this with a widely adopted service!
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1 For more insight and the history of the big ball of mud, check out these articles from Wikipedia and InfoQ.

The Power of Information Hiding
When you design an API to be both highly cohesive and loosely coupled, you benefit
from the principle of information hiding. This is the principle of segregation of
implementation decisions that are most likely to change. If you get this right, you can
protect other parts of the system from extensive modification if the design decision is
changed.

The protection involves providing a stable interface that protects the remainder of the
system from the underlying (changeable) implementation. In regards to APIs, infor‐
mation hiding is the ability to prevent certain aspects of a provider being accessible to
its consumers This can be achieved by using only business- or domain-focused API
endpoints and by not leaking any of the internal abstractions or the implementation-
specific data model or schema.

End State Architecture Options
As you evolve and redesign your monolithic applications and APIs, you should have
a clear vision of what you want your system to be able to do as a result of the changes
being made. Otherwise, this now infamous scene in Alice in Wonderland will become
all too true:

“Would you tell me, please, which way I ought to go from here?” “That depends a
good deal on where you want to get to,” said the Cat. “I don’t much care where—”
said Alice. “Then it doesn’t matter which way you go,” said the Cat. “—so long as I get
SOMEWHERE,” Alice added as an explanation.

You will learn more about the approach to determining your overall goals for evolv‐
ing systems in the next section of this chapter, but for the moment let’s take a tour of
the potential options for your architecture and how they impact API design.

Monolith
Over the last several years, the monolithic architectural style has gotten a bad rap.
However, this is mostly because the word “monolith” has become synonymous with
“big ball of mud.”1 In reality, a monolith is just a software system that is composed
all in one piece and runs as a single-process, self-contained application. There is
nothing fundamentally wrong with a monolithic architecture. For many systems,
particularly proof of concept applications, or systems that are being created as the
underlying business product market fit is being found, this architectural style will
allow you to move the fastest at the beginning of the project. This is because it is easy
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2 Sam Newman’s Building Microservices, 2nd Edition (O’Reilly) is our personal favorite.

to understand and modify as there is only one thing to look at, reason about, and
work on.

The challenge when implementing APIs within a monolithic application is that it is
easier to accidentally create a highly coupled design, which will only become apparent
when you are making modifications in the future. Following best practices, such as
using domain-driven design (DDD) and potentially using a hexagonal architecture,
will pay dividends later.

Service-Oriented Architecture (SOA)
Service-oriented architecture (SOA) is a style of software design where services are
provided to the other components by applications or services that communicate over
a network. The first use of SOA, often referred to as “classic SOA,” also has somewhat
of a bad rap. This is mostly due to the use of heavyweight technologies with early
SOA, such as SOAP, WSDL, and XML, and vendor-driven middleware such as ESBs
and message queues. There was a focus on the network using “smart pipes” for
communication, and business logic was incorporated into middleware.

Evolving your applications toward SOA can be beneficial, but care should be taken to
avoid the use of frameworks or vendor middleware that promotes high coupling or
low cohesions. For example, always avoid adding business logic to an API gateway or
enterprise service bus (ESB). One of the biggest challenges with designing SOA-based
systems is getting the size and ownership of services “correct”—i.e., striking a good
balance with the cohesiveness of the API, having clear ownership of the code across
the organization, and the design and runtime cost of having many services.

Microservices
Microservices are the latest implementation of SOA, where software is composed
of small independent services that communicate over well-defined APIs. There are
several differences with classic SOA—i.e., the use of “smart endpoints and dumb
pipes” and avoiding the use of heavyweight middleware that can become highly
coupled to your services. Many books have been written about microservices,2 and
so we will refer you to these if you are looking to dive deep into the topic. However,
the core principles with evolving microservices include creating loosely coupled and
highly cohesive API-driven services.

As with classic SOA, one of the biggest challenges when designing APIs using a
microservices architecture is getting the boundaries (and cohesiveness) of an API
and the underlying services correct. Using techniques like context mapping and event
storming from the world of DDD, before building or evolving towards microservices,
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will often greatly reward your future efforts. Microservice APIs should ideally use
lightweight technologies that encourage loose coupling. This includes technologies
that you have already explored within this book, such as REST, gRPC, and lightweight
event-driven or message-based technologies like AMQP, STOMP, or WebSockets.

Functions
Although an initial promise of functions being the next evolution of microservices
hasn’t quite come to fruition, there is good adoption of this architecture across a
range of organizations. This architectural style can be a useful target to aim for if you
have a highly event-driven system—for example, a market-based trading system that
is highly reactive to news and market events, or an image-processing system with a
pipeline of standardized transformations to apply and reports to be generated.

The biggest challenge with designing a function-based system and the corresponding
APIs is typically related to getting coupling correct. It’s all too easy to design functions
or services that are so simplistic that many of them have to be orchestrated together
to provide any business value. These services and their APIs tend then to become
highly coupled. The balance here between reusability and maintainability can be dif‐
ficult, and therefore this architecture style should not be chosen without recognizing
that you and your team may take some time to adjust to it.

Managing the Evolutionary Process
Evolving a system must be a consciously managed activity. Let’s look at the things you
need to keep an eye on when making changes to your API.

Determine Your Goals
Before attempting to evolve a system, you should be clear about the motivation
behind the changes. The goals should be catalogued and clearly communicated with
your team and organization. Identifying incorrect assumptions and targets early in
the change process is less costly than at the point where coding begins. The goals
largely fall into two categories: functional and cross-functional.

Functional evolutionary goals are feature or functionality change requests. They are
typically driven by end users or business stakeholders. There may be refactoring
required, but these types of goals focus on writing more code or integrating more
systems.

Cross-functional goals, also referred to as nonfunctional goals, focus on the “ili‐
ties,” such as maintainability, scalability, and reliability. For example, maintainability
changes are often driven by the technical leadership team wanting to reduce the
time taken by engineers on understanding, fixing, or changing a system. Scalability
changes are often driven by business stakeholders that are forecasting increased usage
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or more demand for the system. Reliability work often focuses on attempting to
reduce the number and impact of failures within a system. These types of goals
typically focus on refactoring existing systems or introducing new platform or infra‐
structure components.

Creating cross-functional requirements makes total sense, but how do we set clear
goals around the changes we are looking to make to our system, and how will we
know if we’ve succeeded? This is where fitness functions can help.

Using Fitness Functions
Aiming for an architecture that avoids rapidly becoming legacy requires active deci‐
sions that prevent degradation over time. Defining fitness functions is a mechanism
that provides a constant interrogation of the system architecture and code artifacts
that make up the system. Think of a function as a sort of unit/integration test
for architecture, assessing the “ilities” of the architecture in a quantifiable metric.
A fitness function is included into the build pipeline to help provide a constant
assurance of the goals for the system. In the Thoughtworks blog on fitness functions,
several categories of focus are suggested, as outlined in Table 8-1.

Table 8-1. Categories of fitness functions
Code Quality This is a fitness function category that many teams likely already have in place to a certain extent. Executing

tests allow you to measure the quality of code ahead of releasing into production. Additional metrics are also
worth considering—for example, ensuring that cyclic complexity is minimized.

Resiliency An initial test for resiliency is to deploy a system into a preproduction environment, run sample (or synthetic)
traffic into this, and observe that the error rate is below a certain threshold. An API gateway or service mesh
can often be used to inject faults into the system and facilitate the testing of resiliency and availability to
certain scenarios.

Observability Ensuring that services conform (and do not regress) and publishing the types of metrics that are required by
the observability platform is critical. In “Important Metrics for APIs” on page 140, you reviewed what would be
a good set of API metrics to publish; this could be measured and enforced by an ongoing fitness function.

Performance Performance tests are often an afterthought; however, if you can set out latency and throughput targets,
these can be measured in the build pipeline. Perhaps one of the hardest parts to this objective is getting
production-like data to make the type of performance tests you’d need to run be meaningful. We will consider
this further in “Performance Issues” on page 206.

Compliance This section is very business/organization-specific in terms of assessing what is critical to monitor. It could
include audit or data requirements that are key to continuing to provide evidence that a business is running as
expected.

Security Security has many different aspects to it and you explored some of the considerations in Chapters 6 and 7.
One possible fitness function might be to analyze the library dependencies in the project and check for any
known vulnerabilities. Another could be to run an automated scan over the codebase to ensure that there are
no OWASP-style vulnerabilities present.

Operability Many applications are built, put into production, and then start to evolve; users onboard and then problems
start. Deciding on a minimum set of requirements for operating the platform is key to ensuring the plant
remains operational. Assessing whether monitoring and alerting are in place is a good place to start.
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Creating ADRs around the fitness functions that you would like to introduce is a
good place to start. It might be tricky to immediately implement everything presented
in the preceding table.

Some decisions are difficult to reverse and it is important that, where possible, these
types of decisions are identified.

An irreversible decision is not a bad thing! However, an irrever‐
sible decision without careful thought and consideration is. An
ADR helps with the common “What were they thinking…?” style
question and shares historical context. Decisions made collectively
through the use of ADRs and open discussion will lead to an
architecture that has longevity.

Decomposing a System into Modules
Have you ever worked on a codebase that is bashed for being a monolith (perhaps by
yourself or others)? One of the authors has worked on a four-million-line codebase
that had 24 years of technical debt (according to SonarQube). The code structure
connected ad hoc from many different classes, creating a high degree of uncontrolled
coupling across the application. Refactoring any part of the application was diffi‐
cult—often fixing one bug created other unexpected bugs. None of the problems were
due to the monolithic nature of the system but instead were due to a lack of code
organization and design.

One approach to prevent the spaghetti code/ball of mud is breaking up software
applications using modules. Designing modular components within a codebase helps
to define clear boundaries and logical grouping based on cohesion of functionality.
Modules aim to form well-defined boundaries that hide implementation details.
Where you set the definition of the module can be a complicated issue; in languages
such as Java, there are options such as method, class, package, and module. Each
of those constructs allows a different degree of information hiding that overlaps
with object-oriented encapsulation constructs. For the purpose of our discussion, we
will consider a module to define an architectural partitioning on a larger scale than
methods and individual classes.

Sam Newman has some excellent advice on limiting what you expose to start with
when designing modules. Sam’s book Monolith to Microservices (O’Reilly) is a fan‐
tastic deep-dive into the subject of modularity and migrations from monolith to
microservices:

Personally, I adopt the approach of exposing as little as possible from a module (or
microservice) boundary. Once something becomes part of a module interface, it’s hard
to walk that back. But if you hide it now, you can always decide to share it later.
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Let’s consider what modules we could potentially have introduced in the conference
system case study that we started with in the Introduction. Figure 8-1 introduces a
module to represent the controllers, services, and data access object (DAO) patterns.
Each controller exposes the RESTful endpoints and will be exposed by the web server
hosting the application. The service module is where the business logic lives behind
the controller, exposing a clear interface to the controllers. The DAO module is
where the data access object lives behind the services, exposing clear interfaces to
the services. Module layers are quite common, and getting to the point where there
is a clear single directional dependency between modules is a good application of
modularity.

Figure 8-1. Proposal for module breakdown in the conference case study

Now that we have clear separation, each module can apply a strategy for testing
the subject in isolation. Another advantage of a modular approach is the ability for
developers to reason about and test within a module.

In a recent project, one of the authors created a DAO pattern for interacting with
the database as a module of the application. An interface exposed the functionality
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3 In this context “subject under consideration” is a class or set of classes.

to the other modules of the application, making interactions with the module clear.
A decision was taken later to split the business logic into three modules that utilized
the DAOs into independent services—a monolith first evolution. The three new
modules nicely separated into their own services, using the DAO module as a library.
Designing well-defined modules enabled independent evolution and evolutionary
decisions to be made about the system.

Using C4 diagrams to express software is a lightweight approach at the component
level for defining relationships between components in the system. The component
diagram, first discussed in the Introduction, helps provide a mechanism for review‐
ing relationships and helps in defining modular structures.

Defining modules within your applications is a good design step, though there are
many options for how modularity is achieved. Look to use language-level support to
help enforce modules and agree as a team on the approach that will work best for
your technical stack.

Creating APIs as “Seams” for Extension
The concept of “seams” was first introduced in Michael Feather’s 2004 book Working
Effectively with Legacy Code (Pearson). A seam is a point where functionality is
stitched together—it can be considered as the point where one subject under consid‐
eration3 interacts with another. This is usually achieved by techniques like depend‐
ency injection, injecting the collaborator and executing against an interface allowing
for substitutability. The substitutability consideration is important; this allows for
effective testing without the requirement to run the whole system (e.g., using mocks
or test doubles).

If the application was built without a good design, the definition of a seam may be
complex and make it hard to understand the full range of behavior. When working
with legacy code, it can make it difficult to break apart and refactor code to work in a
more modular way. Nicolas Carlo presents a useful recipe for breaking apart seams of
legacy code, assuming that tests do not already exist:

• Identify change points (seams)•
• Break dependencies•
• Write the tests•
• Make your changes•
• Refactor•
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When designing changes, consider creating an API design for how two (or potentially
more) collaborators connect together. If there is potential that the definition of the
seam could be used outside of the subject under consideration, an interservice API
could be a great choice. For example, if the seam is a similar execution across many
different parts of the codebase, and the goal is to break up a service into smaller
service-based architectures, this is an opportunity to define cross-service reuse.

Identifying Change Leverage Points within a System
Sometimes it is easy for architects or developers to identify “change leverage points,”
or code and services that are obvious candidates to refactor and change in order
to make a system “better” in some way—for example, more performant, extensible,
secure. If you’ve worked in the industry for more than a few years, I’m sure you’ve
worked on a system with a particularly challenging area of the codebase, or a module
that is constantly changing and churning (and often the two issues are correlated!),
and you’ve thought to yourself that you would like to spend time properly addressing
the issue. However, these leverage points are not always obvious, particularly if
you have inherited a codebase or system. For this situation, books such as Adam
Tornhill’s Your Code as a Crime Scene (Pragmatic Bookshelf) will prove useful for
understanding your code and applications. Related tooling can be very useful, such as
version control system churn detection utilities that locate constantly changing parts
of a codebase, or software complexity measuring tooling that analyzes a codebase or
service with each build pipeline run.

Continuous Delivery and Verification
In Chapter 5 you reviewed the importance of automating the deployment and relea‐
ses of loosely coupled systems. The need to continually verify systems as we deploy
more is critical to enabling an evolutionary architecture.

Architectural Patterns for Evolving Systems with APIs
APIs provide a powerful abstraction for evolving systems toward a modern architec‐
ture and also to introduce new features and change. As you discovered in Chapters
3 and 4, gateways and service mesh–based constructs allow an operational migration
using gateways. When creating an evolutionary change, a primary consideration
during the evolutionary period is to mitigate the risks of evolution and maximize the
benefits as soon as possible. Let’s review some architectural patterns that can assist
with migrating to APIs.
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Strangler Fig
A strangler fig is any of the numerous species of tropical figs that grows around an
existing tree. Although a strangler fig often smothers and outcompetes its host, there
is some evidence that trees encased in strangler figs are more likely to survive tropical
storms, suggesting that the relationship can be somewhat mutualistic. Ultimately this
is the goal of an evolutionary architecture—to support a changing system, which may
result in completely removing what was there before. This is achieved by introducing
new components of the application while the old mechanism is still in place. The goal
is to gradually migrate over to the new API-based approach.

In “Case Study: Feature Flagging” on page 126, you reviewed how a feature flag could
be used to query the legacy service or invoke a new API-based service. Figure 8-2
shows a C4 diagram of the use of feature flags. This works well for seams that
previously existed as in-process interactions for the introduction of new APIs into a
service. However, if there are many consumers already interacting with the service
out of process it would be unrealistic to expect all to implement and control a
feature flag.

Figure 8-2. Conference application container diagram for attendees and feature flags

Architectural Patterns for Evolving Systems with APIs | 203



Another model is to use a proxy or gateway to front the API interaction, routing to
the legacy implementation or to the new implementation. This is a type of facade
using a proxy, meaning that the API consumer uses the same API and is unaware of
the migration from one service to another that is happening behind the scenes.

Managing the strangler fig pattern behind the scenes can be tricky, and the introduc‐
tion of a new component can be a single point of failure or bottleneck unless this is
mitigated. The proxy should not take on business logic or this will make it difficult
to remove at the end of the migration. Managing the legacy and modern process
side-by-side is a challenge to ensure data coherency between the two services. You
can find more guidance for overcoming these challenges in Monolith to Microservices.

Facade and Adapter
Facade and adapter patterns are well-known patterns that can assist with migrating to
modern services. The strangler fig pattern is a type of facade, intercepting API calls
and hiding the complexity behind the scenes.

A common situation we have encountered is present in existing large-scale dis‐
tributed applications already using a form of API. Perhaps interservice communi‐
cation is driven over SOAP-RCP or another vintage protocol. Adapters can help
evolve the architecture by introducing a component that converts a given SOAP
request into a new RESTful API call. However, protocol rewriting can be challenging
to implement correctly. Care should be taken here to avoid reducing cohesion or
introducing coupling.

It’s not just legacy situations that can benefit from the use of the adapter pattern.
In Chapter 1 we explored the use of gRPC as a technology that is popular and
effective for east–west communication. Using the grpc-gateway project, it is possible
to present a RESTful JSON endpoint that is converted to the gRPC representation in
the background.

Facade and Adapter patterns are very similar, in the sense that they get in the way.
A facade is usually less complex than an adapter; a traditional API gateway simply
routes API requests, whereas an adapter will be responsible for converting into a
representation understood by the target application.

If an API gateway steps over the line from acting as a facade pattern
to the adapter pattern, the coupling immediately increases. Be sure
to ask if you are still using the right component for the task!
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4 For more information on Pace, see “Accelerating Innovation by Adopting a Pace-Layered Application Strat‐
egy” by Gartner and “A Pace-Layered Integration Architecture” by Dan Toomey.

API Layer Cake
An API migration pattern that is talked about a lot within enterprise contexts is the
“Layered APIs” or “API Layer Cake,” which builds upon the “separation of concerns”
layering pattern seen within traditional enterprise monolithic applications. During
the 2000s, it was considered a best practice in Java or .NET enterprise applications
to implement application functionality in a series of layered tiers—for example,
presentation, application, domain, and datastore tiers. The core idea was that each
user request entering an application flowed sequentially down and then up of each
tier/layer. This pattern allowed for the abstraction and reuse of functionality specific
to each tier, with the trade-off being that an end-to-end slice of functionality often
required modifying many layers—i.e., cohesion within each tier’s layer came at the
expense of high coupling of tiers to provide a unit of business functionality.

The modern API-based approach to this pattern is seen in Gartner’s Pace-Layered
Application Strategy.4 New names are used for each API or microservice layer, with
presentation being translated approximately to systems of engagement (SoE), applica‐
tion to systems of differentiation (SoD), and datastore to systems of record (SoR).

Over time, this pattern has earned a bad reputation, particularly as the legacy systems
that implemented it became more and more challenging to evolve. This pattern
encourages architects and developers to take shortcuts, like duplicating functionality
between many layers to avoid calling an additional layer, or circumventing layers
when dealing with requests, such as the presentation tier directly communicating
with the datastore tier. We generally recommend avoiding the use of this pattern.

Identifying Pain Points and Opportunities
It is often tempting to avoid working on parts of a system or codebase that have a
bad reputation, whether this is for poor code quality, high complexity, or just frequent
failure. Some pain points are not always obvious until you have severe outages to
resolve. However, never let a good crisis go to waste—identification and cataloguing
problematic components within the system can help to track and improve known
issues. Let’s explore some of the common issues that occur within a distributed
API-based system and how to approach this as an opportunity for change.

Upgrade and Maintenance Issues
Identification of where upgrades and reported bugs occur in the overall system can
help create a “hit list.” Watch for the following issues that occur within the system:
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• High change fail percentage for a specific subsystem•
• High volume of support issues raised for a system•
• Large amounts churn of a specific part of the system or codebase•
• High complexity (identified via static analysis and cyclomatic complexity)•
• Low level of confidence provided from development teams when asked about the•

ease of a required change

Consider adding code quality metrics as this can provide a rough guide to potential
underlying issues. A maintenance issue or subsystem issue could be a good opportu‐
nity to introduce an API abstraction to pull functionality out and use strangler fig
to drive improvement. It might also be a code smell that good coding principles are
not followed. In Chapter 9 we will also consider how we approach applications as we
migrate toward API-based architectures on new infrastructure.

Performance Issues
Service-level agreements (SLAs) are an excellent upper bound to track and monitor
performance against. In Chapter 5 you reviewed monitoring and metrics that help
to signal an issue with an API service. The reality is that many applications do
not build in proactive protections against the introduction of problems. If the first
time the team hears about a performance problem is from direct customer feedback
or from production monitoring—e.g., an edge system that has exhausted a user
request-response latency budget—the team is immediately at a disadvantage when
reacting to the problem.

Performance issues can be architectural; for example, do you have a service calling
a service located in a different region or across the internet? When it comes to
performance issues, measuring and creating an objective plan is critical. Take a meas‐
urement of the existing system, create a hypothesis on where performance could be
improved, and then test and verify. It is important to consider the system as a whole,
rather than attempting to optimize a specific component in isolation. Automating the
measurement process allows you to introduce the performance measurement as part
of the build process.

Breaking Dependencies: Highly Coupled APIs
Moving toward a distributed architecture is only going to pay dividends if parts of
the architecture can evolve independently. A particular antipattern to watch out for
is the synchronized coordination of releases across different parts of the system. This
is a sign that APIs are potentially highly coupled, and breaking this could be an
opportunity to further reuse and reduce release friction.
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One skill that is often overlooked in training courses and in teams is working effec‐
tively with legacy code. Often developers are unsure about how to introduce the types
of changes that help to break up dependencies. There are two techniques that are
useful to consider when looking to break dependencies.

The sprout technique is covered in Michael Feather’s 2004 Working Effectively with
Legacy Code. It is often very difficult to unit test code that wasn’t built with testing in
mind. Sprout involves creating the new functionality elsewhere, testing it and adding
it to a legacy method known as the insertion point. Another technique is to wrap the
existing functionality by creating a new method with the same name and signature as
the old method. The old method is renamed and called from the new method, with
any additional logic before the legacy method is called.

If a service is predominantly legacy, working with legacy code is a critical skill to
develop. Working on coding katas or pair programming on complex areas of the
codebase will help promote understanding across the team. Sandro Mancuso created
an excellent video on YouTube that several of us have used to understand practical
approaches to working with legacy code.

Summary
In this chapter you have learned how to use an API-driven approach to evolve vintage
monolithic applications toward a service-based architecture:

• APIs often provide a natural abstraction or “seam” within systems, supporting•
decomposition of services and facades to support gradual change. As such, they
are a powerful force in any architect’s toolbox when evolving a system.

• Key concepts to understand when evolving a system using APIs include coupling•
and cohesion. Designing and building systems with these universal architectural
concepts in mind will make evolution, testing, and deploying of systems easier
and safer.

• When evolving a system, you should always be clear about your current goals•
and constraints. Without clearly establishing and sharing these, migrations can
become open-ended, which drains resources while providing little value and can
affect morale.

• Well-established patterns, such as the strangler fig, can increase the speed and•
safety of evolving a system and prevent the need to reinvent the wheel.

The next chapter builds on the focus of this chapter and extends the scope of
evolutionary architecture to also include migrating to cloud infrastructure.
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CHAPTER 9

Using API Infrastructure to
Evolve Toward Cloud Platforms

In the previous chapter we provided an overview of architectural approaches that
you can use when evolving APIs and the services that power them. An equally
important topic to consider within the evolution of systems is the underlying infra‐
structure, platforms, and hardware. Often this changes and evolves on its own
rhythm: as hardware breaks, companies and technology become merged or acquired,
or organization-wide IT policies dictate that infrastructure be upgraded. However,
at times an API program will drive infrastructure changes, particularly in relation
to modernization and moving to more cloud-like (software-defined) infrastructure.
Now, you will learn how to implement and manage evolving a system and the
corresponding API infrastructure.

This chapter builds on the architecture foundations presented in the previous chap‐
ters and explores how you can use API infrastructure, such as API gateways, service
meshes, and developer portals, to evolve a system when moving to a cloud-based
environment. You will learn the differences between a “lift and shift” of applications,
a “replatform,” and a “refactor or re-architecture,” and develop the skills to know
which is the most appropriate given a specific context. The accompanying case study
will show how the existing API gateway and the Attendee service can be migrated to
the cloud. The use of an API gateway can provide location transparency for services
and APIs being served, which allows the deployment of a service into the cloud and
traffic to be gradually shifted from the existing service to the new with limited (or no)
impact on consumers. You will also explore nascent migration options for migrating
services to the cloud using the multilocation/cluster functionality of a service mesh.
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Case Study: Moving the Attendee Service to the Cloud
For the next evolution of the conference system case study, you will focus on moving
the Attendee service to a cloud vendor’s infrastructure. The primary motivation for
doing this is that conference system owners want to eventually remove the burden
of running their own data center. This will ultimately involve moving all of the
new services, the monolithic application, middleware (such as API gateways), and
datastores, to the cloud. We’ve chosen to migrate the Attendee service first, as it is
the newest component and also one of the services that receives the most traffic.
Figure 9-1 shows how the extracted Attendee service is currently running outside of
the main conference system application’s context.

Figure 9-1. C4 model showing the extracted Attendee service

As you will explore in this chapter, there are multiple approaches to moving this
service and supporting infrastructure to the cloud. Before you dive into the mechan‐
ics of the preceding approach, let’s first explore the options that we should consider
before deciding on the migration strategy.
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1 See “6 Strategies for Migrating Applications to the Cloud”.

Choosing a Cloud Migration Strategy
Building on Gartner’s 2010 article, “Migrating Applications to the Cloud: Rehost,
Refactor, Revise, Rebuild, or Replace?” Amazon Web Services published a blog in
2016 that presented the “six Rs” of cloud migration.1 These articles are a great
jumping-off point if you have been tasked with evaluating or leading a migration of
your existing architecture and systems to the cloud. As APIs are often the closest
business-driven component to the user—and a key point of ingress for the major‐
ity of requests—you should pay special attention to them when deciding on your
approach to migration. The six Rs present a spectrum of options from “do nothing”
all the way through to a complete rebuild or retiring of a system. They are:

• Retain or Revisit•
• Rehost•
• Replatform•
• Repurchase•
• Refactor/Re-architect•
• Retire•

Let’s examine AWS’s six Rs in more detail and explore how you can use this frame‐
work to evolve API infrastructure.

Retain or Revisit
This is the do nothing (for now) strategy. Although it can be tempting to discount
this approach, many architects (us included) will suggest you “pick your battles,” and
sometimes the battle of migrating an API is not worth the return on your effort. This
decision should, of course, be based on a sound business and technical evaluation,
and you should communicate the decision to not take action internally and externally
as appropriate. This is where ADRs shine—in terms of providing the paper trail and
rationale of these decisions for future reference.
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Communicating Change and Deprecations

A business and technical evaluation of a current API or system may
lead you to decide against evolving the system at the current time.
In this situation, it’s still important to communicate any known
dates by which action must be taken. For example, if a business
unit is shutting down on a known date, or a system will reach
end-of-life (EOL), or a key software or datastore license will expire
at a known time, this should be communicated to consumers as
a deprecation warning. You will most likely have a required depre‐
cation notice baked into contracts and SLAs, and so be sure to
consult these.

One key factor when considering moving applications to the cloud is the introduc‐
tion of latency between two services during evolutionary steps. If you have a high-
traffic service, a slowdown will be incurred for each request when crossing network
boundaries. Ensuring that there is an understanding of what the degradation looks
like is an important consideration, and if this violates an SLA, moving the service
may not be an option. In “Modeling Exchanges and Choosing an API Format” on
page 20, you learned how to choose a protocol and design an API within constraints,
which is an important consideration when crossing boundaries.

Retaining would not be a viable strategy for our conference use case, as this would
simply be “kicking the can down the road” and deferring the goal of migrating to the
cloud.

Rehost
“Rehost” is otherwise known as “lift-and-shift.” It involves moving systems and work‐
loads to a cloud platform without any re-architecting. If you are looking to consoli‐
date workloads or simply have to migrate away from your current infrastructure, this
can often be an effective strategy. However, be aware that cloud infrastructure does
not always behave in the same way as on-premise hardware, and so identify and
confirm any assumptions that you have made.

Be Cautious with Specialist Systems and Bespoke Hardware

Although many “lift-and-shift” projects work as expected, some
don’t. This is especially true in relation to specialist bespoke sys‐
tems and custom hardware. For example, older specialist systems
may assume that all communication within the system occurs over
a local bus or dedicated network connections (which isn’t the case
in the cloud), and certain datastore technologies assume specific
hardware characteristics (or guarantees) of the underlying block
storage system. When in doubt, do your research.
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Rehosting could be a viable approach for our case study, although we have chosen the
option of replatforming to allow us to take advantage of some cloud features.

Replatform
This approach is sometimes referred to as “lift-tinker-and-shift.” It is very similar
to rehosting but also takes advantage of some cloud services that require minimal
re-work. For example, an existing datastore that is run as a system component
may be swapped out for a protocol-compatible cloud service. You could swap a
native MySQL datastore with a MySQL-compatible AWS RDS, an Azure Database, or
GCP Cloud SQL. Another common replatforming is to update or change a language-
specific application server or container.

This is the approach we have chosen for our conference system case study, so we can
avoid major rework while still taking advantage of new cloud services as we migrate
away from our existing on-premise infrastructure.

Repurchase
Repurchase primarily involves moving to a different product—for example, subscrib‐
ing to a SaaS-based email-sending service rather than continuing to run an email
server in-house.

As our conference system example primarily consists of bespoke applications and
standard datastores, there is no option to repurchase (other than perhaps purchas‐
ing an off-the-shelf conference management system, which is out of scope for the
migration).

Refactor/Re-architect
Refactoring means a re-imagining of how the application is architected and devel‐
oped, typically using cloud native features. As with any refactor, the core (external)
functionality of the application or system should not change, but how the function‐
ality is accomplished internally will definitely change. This is typically driven by a
strong business need to add features, scale, or performance that would otherwise
be difficult to achieve in the application’s existing environment. For example, if
an organization has decided to decompose an existing monolithic application into
microservices, a move toward adopting cloud native patterns is very often also
considered. This pattern tends to be the most expensive to implement, but, if you
have a good product-market fit and are being limited by your existing technology
choices, it can also be the most beneficial.

We have not explicitly chosen this approach for our case study, as you have already
been re-architecting the conference system throughout this book. One important
point to consider is that API infrastructure and design lead toward a more cloud
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native way of thinking. Defining and modeling APIs as discussed in Chapter 1
facilitates a neat mechanism for representing services during refactor/re-architecture.
It is also key that many cloud-based services or interactions are based on APIs too.
The strategy around APIs when re-architecting is just as important as the service and
systems that you plan to use on the cloud.

With the re-architecture now complete, it makes the most sense to replatform onto
the cloud before making additional changes to the architecture.

Retire
“Retiring” systems during a migration simply means that you get rid of them. During
many large migrations we have taken part in, there is often at least one existing
system that is not being used any more and has simply been forgotten. As there is no
longer a need for this functionality, the system can simply be decommissioned and
the hardware resource freed or recycled.

It goes without saying that, as our conference system is relatively small and cohesive,
there are no parts of it that can be retired quite yet! One of the overall goals was
to retire the legacy conference system, and once the replatforming and refactoring is
complete we can move forward with this.

Case Study: Replatforming the Attendee Service
to the Cloud
Given the context provided in the previous section of this chapter, we have decided
to “replatform” our Attendee service in addition to migrating the API gateway to the
cloud. Retaining or retiring the service were not valid options, given the requirements
to migrate toward the cloud. Repurchasing also did not make sense in this context.
As we have already re-architected the attendees’ functionality, by extracting this to
a service early in this book, the refactor/re-architect did not appear appropriate.
However, when you are adding new functionality into the conference system in the
future, re-architecting the system (potentially extracting a service) and moving this
to the cloud would be an option to strongly consider. Rehosting could be a solid
strategy, but we are keen to take advantage of a cloud-based database-as-a-service
rather than “lift and shift” our own MySQL database instance.

As shown in Figure 9-2, the “replatforming” approach will provide a good foundation
on which to continue the migration as we move more services to the cloud. Moving
the API gateway to the cloud now will also help to support API traffic being incre‐
mentally routed from the existing on-premises location to the cloud.

Figure 9-2 shows the final state of the replatformed architecture.
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Figure 9-2. Infrastructure diagram showing extracted API gateway and Attendee service

Let’s now consider how you could implement other requirements, such as API man‐
agement, as the conference system evolves.

Role of API Management
Regardless of the strategy taken for your evolutionary journey, API management
can play a key role in migration and also in unlocking the value of APIs across
and even outside of an organization. API managers are essentially a supercharged
gateway at the heart, providing a wide variety of additional features for publishing
and controlling APIs. API managers provide policies that enable edge concerns,
such as OAuth2 challenges, content validation, rate limiting, throttling, and many
other features that are typical in a gateway. Additionally, they can provide developer
portals containing a marketplace of all APIs that developers can use when building
systems to consume offered APIs. Organizations can also use API management to
monetize accessing APIs, both to external customers and for internal “chargebacks,”
which are common in enterprises and cross-divisional deployments. In “Current API
Gateway Taxonomy” on page 73, we shared taxonomies for API gateways, and API
management sits within the enterprise gateway category.
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Perhaps the most important part of API management is that it can offer a central
point to discover APIs, while you continue to make changes behind the scenes. It is
possible to front the legacy conference system with an API, for example, while also
offering the new broken-out Attendee API. In the case of the conference organizers,
they could potentially look at offering an API that provides “conference management
as a service” that would allow other conferences to use this, or to interface in a
controlled manner with the external CFP system. Assuming that contracts on the API
don’t change, it is possible to evolve behind an API management layer.

Organizations often talk about the concept of being API First, meaning that all
interactions between systems are carefully designed and modeled as APIs. This was
a concept that we explored in Chapter 1. By following good design principles and
striving for “API-First” design, this enables you to unlock value both externally
to customers or internally within the wider organization by using tools like API
management.

To modernize and migrate applications to be able to take advantage of using a
tool like external API management, you need to reconsider traffic patterns. As archi‐
tecture evolves to become hybrid, spanning different networks and deployments,
thoughts about traffic also needs to be challenged.

North–South Versus East–West: Blurring Lines of
Traffic Management
With a tour of the various options available for an API infrastructure migration com‐
plete, let’s now explore how our chosen approach to replatforming will impact the
management of API traffic within the evolving conference system. As we have chosen
to incrementally migrate our services—rather than risk a big bang—the running
of services across multiple cloud environments and on-premise data centers does
present additional challenges. As is the case with many incremental cloud migrations,
traffic will need to transit multiple networks in order to satisfy an API request made
by a user.

Start at the Edge and Work Inward
In our case study, we have chosen to start at the edge by migrating the API gateway
to the cloud along with a single service. Doing this can provide a migration team the
chance to initially set up a completely new cloud environment without disrupting the
existing system. For example, a duplicate of the current API gateway can be deployed
into the cloud while the existing gateway is left running as is. This enables you to
minimize risk by incrementally configuring the cloud-based API gateway without
disrupting the existing production system.
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It is often sensible to build an isolated proof of concept purely within the cloud, and
only when this has been verified, start experimenting with routing into and out of
the cloud environment. Designing for cloud-based architectures is often a paradigm
shift from a design perspective. Don’t underestimate the time needed to learn and
understand new infrastructure.

Crossing Boundaries: Routing Across Networks
Before a migration to the cloud can go live, it is often necessary to ensure that
the new and old systems can interact across the different networks. As discussed in
Chapters 3 and 4, you have a range of options to implement this routing. If there
is a single monolithic application and a small number of simple routes, it can be
easiest to temporarily route from the new API gateway to the old, potentially with a
simple HTTP redirect. However, if there are a large number of routes that will cross
networks, or traffic must not leave the network once it has entered, you will have
to consider other options, such as virtual private network peering or endpoints, or
multicluster service mesh.

With API traffic transiting multiple networks, you will most likely need to consult
your InfoSec teams, as this will disrupt the traditional approach to perimeter defenses
and zonal architecture. Let’s explore this topic in more depth and learn how the move
to zero trust networks can help.

From Zonal Architecture to Zero Trust
Before learning how modern API gateways and service meshes can help you imple‐
ment zero trust networks, let’s first explore the traditional approach to zonal network
architecture.

Getting in the Zone
As the commercial internet grew in popularity, more and more regulated industries
began providing access to applications. This meant that both new systems and
existing internal systems were made to be user facing. The emergence of zonal
architectures provided a best practice in designing secure networks. Zoning is used
to mitigate the risk of a completely open or flat network by segmenting infrastructure
services into logical groupings that have the same networking security policies and
security requirements. Consider a vulnerability like Log4Shell (CVE-2021-44228), a
zero-day vulnerability posing significant risk to Java applications using affected Log4J
libraries. Using the exploit, an attacker could gain access to a host in a network and
start to run malicious activities. The range of impact and services under exploit is
known as the blast radius of the attack. If all untrusted requests enter a zone that
has access to very little high-value information, the blast radius is minimized and
security operations have time to act to prevent serious outage. Zones tend to cascade,
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2 Interested readers can learn more about zonal architectures from the Canadian government’s Network
Security Zoning.

with each traversal into the next zone applying more defense-in-depth mitigation to
challenge the inbound traffic.

The zones are separated by perimeters (Zone Interface Points) implemented through
security and network devices. Zoning is a logical design approach used to control and
restrict access and data communication flows only to those components and users as
per security policy.

There are many approaches to defining zones and the associated security require‐
ments, both standardized (often at the country level) and bespoke. However, as
shown in Figure 9-3, four typical zones are found in most zonal architectures:2

Figure 9-3. A typical zonal architecture, taken from the Canadian government’s
ITSG-22

Public Zone (PZ)
This zone is entirely open and includes public networks such as the public inter‐
net, the public switched telephone network, and other public carrier backbone
networks and services.

Public Access Zone (PAZ)
This zone mediates access between operational systems and the Public Zone and
often includes a demilitarized zone (DMZ).
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Operations Zone (OZ)
An OZ is the standard environment for routine operations and with appropriate
security controls at the end systems. This zone may be suitable for processing
sensitive information; however, it is generally unsuitable for large repositories
of sensitive data or critical applications without additional strong, trustworthy
security controls that are beyond the scope of this guideline.

Restricted Zone (RZ)
This zone provides a controlled network environment generally suitable for
business-critical IT services or large repositories of sensitive information and
supports access from systems in the Public Zone via a PAZ and an OZ.

This approach to perimeter-based network design is somewhat similar to the old
“castle and moat” defense, in that an attacker will struggle the most at the ingress
point, but once inside the castle walls, they will generally have an easier time navigat‐
ing around. This is largely because assumptions are made about any communication
originating from within the system perimeter, network, or location. However, cloud
infrastructure can challenge these assumptions. In many cloud platforms, the geo‐
graphical and network location of the underlying infrastructure is abstracted away or
not available. Even with protections in place from cluster providers, there is still the
risk of a supply chain attack, where software is manipulated with malicious content at
build time. Another possibility is a malicious user at the infrastructure provider’s site,
accessing information from the platform level.

Running different types of security across different types of deployment is possible,
however a more homogeneous approach reduces the risk of assumptions being made
and the requirement to learn different security techniques. There is inherent trust
designed into a zone-based architecture, which prompted the evolution of a new
approach: that of zero trust.

Trust No One and Verify
The zero trust security model, also known as zero trust architecture or perimeterless
security, describes an approach to the design and implementation of modern network
systems. The main concept behind the zero trust security model is “never trust,
always verify,” which means that devices should not be trusted by default, even if
they are connected to a permissioned network such as a corporate LAN and even
if they were previously verified. The reasoning for zero trust is that the traditional
approach—trusting devices within a notional “corporate perimeter,” or devices con‐
nected via a VPN—is not relevant in the complex environment of a corporate net‐
work. The zero trust approach advocates mutual authentication, including checking
the identity and integrity of devices without respect to location, and providing access
to applications and services based on the confidence of device identity and device
health in combination with user authentication.
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The eight principles outlined in our guidance will help you to implement your own
zero trust network architecture in an enterprise environment. The principles are:

• Know your architecture, including users, devices, services, and data.•
• Know your user, service, and device identities.•
• Assess your user behavior, device, and service health.•
• Use policies to authorize requests.•
• Authenticate and authorize everywhere.•
• Focus your monitoring on everything in regard to access: users, devices, and•

services.
• Don’t trust any network, including your own.•
• Choose and design services for zero trust.•

The eight principles outlined are perfectly reasonable, however they are very tricky
to consider in zonal architecture. The concept of a zone’s trust assumptions would
challenge many of these points. For example, a zonal architecture often only authenti‐
cates a user once at the edge of the system, and all networks within the perimeter are
trusted by default. Let’s explore how we can potentially evolve to a zero trust–based
architecture.

Role of Service Mesh in Zero Trust Architectures
Zero Trust Architecture, published by NIST in 2020, is a fantastic document in
defining zero trust and key architectural considerations. Service mesh and API gate‐
ways combined provide a fantastic platform for implementing zero trust–based archi‐
tectures. Using service mesh helps provide a homogeneous modeling of how your
architecture components are represented and how the traffic flows between them.
Underlying technologies enable a concrete model around running process identity
and management of certificates helps to assert and prove identity. Integration of
active tracing and monitoring enables analysis at all points in the platform, both for
users but also for underlying services and Kubernetes pod health. All ingress traffic
must have a strong challenge, often asserting that request with OAuth2 as discussed
in Chapter 7, and traffic within the cluster can use mTLS for a strong assertion of
authentication and authorization.

Don’t trust any network, including your own is an interesting challenge for service
mesh. In most service mesh models, a sidecar is tightly coupled with a service or app,
enabling traffic management and security by routing via the sidecar. However, the
simplicity of this deployment means that you cannot make concrete assertions on the
platform that you are running on. What sits under the application and the sidecar
needs to be secured to not make trust-based assumptions.
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Augmenting Service Mesh with Network Policies
Platform security underpins any assumptions that you make at the application level.
You therefore need to move down a level to get full zero trust. Kubernetes has the
concept of NetworkPolicies allowing the use of a network plug-in, such as Calico. The
controls allow you to create an isolation of pods from the platform that they operate
on.

For example, the following policy will lock down all inbound and outbound traffic
from being able to enter a given pod. For a zero trust architecture, this would be the
default for pods; by applying the rule, the pod becomes fully isolated:

---
apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
  name: default-deny-all
spec:
  podSelector: {}
  policyTypes:
  - Egress
  - Ingress

Service mesh implementations often rely on looking up service names using a central
DNS system. Even that is locked down. You need to start to enable a few controlled
scenarios in the platform to remain locked down, but still allow the service mesh
to operate. In the following policy, we allow DNS lookup on the legacy conference
system, in order for it to locate the Attendee service:

---
apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
  name: allow-dns
spec:
  podSelector:
    matchLabels:
      app: legacy-conference
  policyTypes:
  - Egress
  egress:
    - ports:
      # allow DNS resolution
      - port: 53
        protocol: UDP
---
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3 The mechanics of this varies for each service mesh implementation.

At this point the service mesh legacy conference service can discover where the
attendees are via the sidecar, however the request itself would be blocked. Every
routing rule in service mesh needs a corresponding allow rule defined in the network
policy adapter. In this final example, we open up the rule for the legacy conference
system to communicate with the Attendee service:

---
apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
  name: allow-conference-egress
spec:
  podSelector:
    matchLabels:
      app: legacy-conference
  policyTypes:
  - Egress
  egress:
  - to:
    - namespaceSelector:
        matchLabels:
          kubernetes.io/metadata.name: attendees

For ingress to work, you would also need to add ingress rules from the service mesh
gateway through to the target services. In “Application Decisions for Effective Soft‐
ware Releases” on page 142, we outlined application-level decisions for an opinion‐
ated platform. Ensuring that the rules and configuration are applied in a consistent
manner at release time is another reason to consider an opinionated platform.

By using service mesh and network policies, you have learned how to created a
microsegmented architecture. The benefit of this approach is that you can have
a scenario whereby security is consistent in a hybrid architecture with both the
cloud and environments that were formerly zonal-based. A common pattern that is
emerging is using a service mesh to bridge different (“multicluster”) networks. This
is accomplished via the use of peering service meshes together across the clusters,
bringing the on-premises and cloud data plane under the knowledge of a combined
control plane.3 In Figure 9-4 the service mesh is responsible for all routing and
can provide a zero trust architecture across networks. The advantage of taking this
route is that it leads to a secure evolutionary architecture and homogeneous security
environment. By making on-premises work like the cloud, there is now an easy path
to evolving the remaining services into the cloud.
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Figure 9-4. Multicluster service mesh peering

Summary
In this chapter you have learned how the use of API infrastructure, such as API
gateways, service meshes, and developer portals, can be used to evolve a system when
moving to a cloud-based environment:

• There are a number of approaches to evolving or migrating an API-based system•
toward the cloud, ranging from retain (“do nothing”), to rehost, replatform,
repurchase, refactor/re-architect (rewriting to take advantage of cloud infrastruc‐
ture), and retire.

• When migrating an API application to the cloud, you will often find that the line•
between north–south (ingress) and east–west (service-to-service) traffic manage‐
ment blurs.

• An API gateway can be used as a tool for migration, as it can encapsulate•
functionality and act as a facade for multiple backend systems operating from
different environments and networks.
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• The industry is moving away from zonal network architectures to “zero trust”•
systems, and service mesh technology can facilitate this move.

• Adopting zero trust allows you to combine both zero trust and zonal architec‐•
tures, which helps with bridging cloud and on-premises systems during a migra‐
tion period.

With your journey through the landscape of API architecture almost complete, the
next and final chapter wraps up the key concepts and provides a look to the future in
this space.
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CHAPTER 10

Wrap-up

In the previous nine chapters of this book, you have undertaken a journey covering
everything from designing APIs, to implementing, securing, and operating them. The
focus has been on architecture, but just as important is how you apply architecture
within your organization.

In this final chapter of the book, you will explore emerging API technologies that may
play a bigger role in the future and learn how we keep up-to-date with these changing
best practices, tools, and platforms.

Case Study: A Look Back on Your Journey
Throughout the book, we have been making evolutionary steps to update and mature
the conference system architecture use case that we began with. You can see the
starting point in Figure 10-1.

Figure 10-1. Original conference system architecture
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Let’s look at some of the decisions taken in extracting the Attendee service. As shown
in Figure 10-2, and discussed in the Introduction, we made the decision (based
on requirements from the conference system stakeholders) to extract the attendees,
functionality into an API-based service that would be run as a standalone process
external from the legacy conference system.

Figure 10-2. Extracting the Attendee service from the conference system

In Chapters 1 and 2, the architecture remained static while we explored how to
design and test the Attendee API and service. In Chapter 3 we took our first big
evolutionary step, introducing an API gateway between the end-user customer and
the existing conference system and new service.

As shown in Figure 10-3, the customer now makes requests to the conference system
via the API gateway, which provides an abstraction and single point of entry for
traffic bound to either the legacy conference system or the new Attendee service. This
step introduced a facade pattern, allowing control over when the legacy service is
called versus the modern service.
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Figure 10-3. Adding an API gateway to the conference system

We took this one step further in Chapter 4, by extracting the conference session
functionality from the legacy conference system into a new Session service, and
introducing a service mesh to handle the service-to-service API traffic. At this point
in the case study, the architecture looked like Figure 10-4.

Figure 10-4. C4 Model showing the extraction of the Session service from the conference
system

Case Study: A Look Back on Your Journey | 227



With a focus toward incrementally releasing API-based services in Chapter 5, we
created an internal and external version of the Attendee service and used feature flags
to determine which service a user’s request was routed to. Figure 10-5 shows the two
Attendee services side-by-side within the static architecture diagram.

Figure 10-5. C4 model showing two Attendee services being routed to via feature flags
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In Chapter 6 we focused on security, and although the architecture remained static,
we introduced the concept of a mobile application calling the conference system,
as shown in Figure 10-6, in order to provide a realistic scenario to conduct threat
modeling.

Figure 10-6. C4 architecture showing a mobile app interacting with the conference
system
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Chapter 7 added an external CFP system to the architecture, as shown in Figure 10-7,
which required the implementation of external (user-facing) authentication and
authorization.

Figure 10-7. External system communicating with the conference system

In Chapter 9 we focused on migrating the Attendee service and API gateway to a
cloud platform, which resulted in the architecture shown in Figure 10-8.
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Figure 10-8. Cloud migration to conference system

Finally, in Chapter 9 we provided a potential model for migrating toward a zero
trust architecture, with a uniform approach to deployment, routing, and security. In
Figure 10-9 there is an option for hybrid architecture while the evolutionary journey
continues to the cloud.
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Figure 10-9. Cloud migration to conference system using multicluster service mesh

Throughout the case study, our focus has been on highlighting key decision points
that you and your team will have to make as a typical system evolves toward becom‐
ing API- or service-based. From the humble beginnings of a single service and
database running on premises, as you have journeyed toward a multiservice system
running across the cloud and on-premises, you have learned that with the increased
flexibility this final implementation offers, there are also trade-offs with architecture
and infrastructure complexity.

Although this concludes the evolution of our case study in this book, we encourage
you to experiment with creating new requirements, designing new APIs, and extract‐
ing additional services.

APIs, Conway’s Law, and Your Organization
This is not a book about organizational design, but we wanted to mention the
importance of this in relation to designing, building, and running APIs. “Conway’s
Law” has become famous within the microservice community, and the concept also
applies to API architecture:
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Any organization that designs a system (defined broadly) will produce a design whose
structure is a copy of the organization’s communication structure.

—Melvin Conway in How Do Committees Invent?

Or, put more succinctly, “if you have four groups working on a compiler, you’ll get a
4-pass compiler.” We have definitely seen this in the API world—as we like to joke,
“if you have four groups working on a microservice system, you’ll get four layers
of APIs.” We couldn’t hope to cover the topic of organizational design in the depth
it deserves in this book, and so instead we would like to recommend you read the
following books:

• Team Topologies (IT Revolution Press)•
• Agile IT Organization Design: For Digital Transformation and Continuous Delivery•

(Addison-Wesley)
• The Art of Scalability (Addison-Wesley)•

If you are looking to undertake a major organizational shift or “digital transforma‐
tion,” we strongly recommend consulting the preceding works. Any API-based sys‐
tem is inherently a socio-technical system, and so you should always factor in the
“socio” aspect as much as the “technical.”

Understanding Decision Types
Jeff Bezos, the founder of Amazon, is famous for many things, and one of them is
his discussion of Type 1 decisions and Type 2 decisions. Type 1 decisions are not
easily reversible, and you have to be very careful making them. Type 2 decisions are
easy to change: “like walking through a door—if you don’t like the decision, you
can always go back.” Usually this concept is presented in relation to confusing the
two, and using Type 1 processes on Type 2 decisions: “The end result of this is slow‐
ness, unthoughtful risk aversion, failure to experiment sufficiently, and consequently
diminished invention. We’ll have to figure out how to fight that tendency.” However,
in the majority of cases—especially within a large enterprise context—choosing API-
enabling technologies like an API gateway or service mesh is very much a Type 1
decision. Ensure your organization acts accordingly!

Preparing for the Future
When writing a book, we naturally capture experience and knowledge at a fixed point
in time. There are always new developments emerging. Following are three topics
that we didn’t believe yet warranted full sections but are nonetheless worth keeping
an eye on for their future impact on API architecture.
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Async Communication
Asynchronous APIs are very popular, falling generally into two categories: client-
server and client-broker. An example client-server relationship is achieved with
technologies such as gRPC, and the client-broker relationship is achieved using inter‐
mediate technologies such as Kafka. As you learned about in Chapter 1, OpenAPI
Specifications have been critical to consistently describing and specifying REST APIs.

The AsyncAPI is an exciting and developing standard to provide a specification for
asynchronous APIs. One challenge with asynchronous-based APIs is supporting the
variety of protocol formats and range of technologies. It is definitely one to watch
as the popularity of event-driven architectures and the need to define exchanges is a
rapidly growing space.

HTTP/3
HTTP/3 is the third major version of the Hypertext Transfer Protocol used to
exchange information on the World Wide Web, alongside HTTP/1.1 and HTTP/2.
HTTP semantics are consistent across versions: the same request methods, status
codes, and message fields are typically applicable to all versions. The differences are
in the mapping of these semantics to underlying transport protocols. Both HTTP/1.1
and HTTP/2 use TCP as their transport (as in TCP/IP). HTTP/3 uses QUIC, a
transport layer network protocol that uses UDP. The switch to QUIC aims to fix a
major problem of HTTP/2 called “head-of-line blocking,” which in particular affects
websites that require multiple resources to load.

HTTP/3 promised potentially big speed gains, but as the underlying transport proto‐
col has changed, this will require upgrades to ingress proxies and other networking
components. The good news is that as of the time of writing, HTTP/3 is already
supported by more than 70% of running web browsers.

Platform-based Mesh
As hinted within Chapter 4, many signals are pointing toward service mesh being
merged with modern platform offerings. If this trend continues, it may be wise to
adopt the mesh integrated within your chosen vendor’s technology stack. In much
the same way that the majority of organizations adopting a cloud vendor’s Kubernetes
stack don’t replace the container (OCI) or networking (CNI) implementations, it may
well be the same in the future with the service-to-service communications. As part of
this evolution, we recommend keeping watch on related standards in this space, such
as the Service Mesh Interface (SMI). The emergence and adoption of solid interfaces
surely point toward this layer of the communication stack being homogenized.
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What’s Next: How to Keep Learning About
API Architecture
We began this book by mentioning that all three of us started the journey that
ultimately led to the creation of this book in February 2020 at the O’Reilly Software
Architecture Conference (SACON). We all love learning, and attending events is a
big part of our continued approach to gaining new skills and knowledge. One of the
most common general questions we get asked relates to how we approach learning
and experimenting with new technologies. In this section of the chapter, we’ll share
with you our practices, insights, and habits.

Continually Honing the Fundamentals
We all believe that it is vitally importantly to constantly revisit the fundamentals
of any skill you wish to master. This is especially important in such a fad-driven
industry like the software development and operations domains. We’ll cover some of
the locations of where we search out this kind of knowledge, but we want to stress
that when browsing websites, reading books, attending conferences, and the like, we
actively seek out the existing and latest coverage of the fundamentals. For example, at
many architecture conferences you will find sessions covering topics such as cohesion
and coupling, and we have all at times learned and been reminded of concepts that
we take back to our offices and apply the next day. As well as reading the latest book
on cloud platforms, we also read new takes on traditional topics, such as Gregor
Hohpe’s “The Architect Elevator: The Transformation Architect.”

It’s very much a cliche in our industry that “what’s old is new,” and the cycles of
technology that constantly repeat in slightly different forms can be navigated much
more effectively by architecture designers who are constantly reminding themselves
of the fundamentals.

Keeping Up-to-Date with Industry News
We recommend collating and constantly refining a list of websites and social media
sites that provide coverage of the latest news within the architecture and API
domains. Reading these once a week will help tune your sense of emerging trends
and technologies that you may want to investigate. For example:

• InfoQ•
• DZone•
• The New Stack•
• Software Architecture Reddit•
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In addition to these general news sites and aggregators, you will also likely find
certain organizations or individuals that write useful blogs on emerging topics. Using
an RSS reader, such as Feedly, can allow you to collate these sources and review
them on a weekly or monthly basis. Twitter can be a powerful tool for insights
and comments on emerging technologies; following individuals who have similar
interests and contribute to open source projects is a good way to find out early about
new features.

Radars, Quadrants, and Trend Reports
Although you should always perform your own experiments and proof of concept
work, we also recommend keeping up-to-date with specific technology trends via
analyst sites. This type of content can be especially useful when you are struggling
with a problem or have identified a solution and are in need of a specific piece
of technology that many vendors offer. We recommend the following sources of
information for learning more about the state of the art of technology within the API
space:

• ThoughtWorks Technology Radar•
• Gartner Magic Quadrant for Full Life Cycle API Management•
• Cloud Native Computing Foundation (CNCF) Tech Radar•
• InfoQ Trends Reports•

Several organizations and individuals also publish periodic technology comparison
spreadsheets, and these can be useful for simple “paper evaluations” in order to
shortlist products to experiment with. It should go without saying that you will need
to check for bias across these comparisons (vendors frequently sponsor such work)
and ensure the publication date is relatively recent.

Learning About Best Practices and Use Cases
We also recommend that you constantly be on the lookout for best practices and
use cases related to the work you are doing. Many organizations like to share the
why, what, and how of what they are doing. The motivations for this are important
to understand, but often it’s a mix of altruism, bragging rights, sales awareness, and
recruiting. You always have to apply caution when learning about use cases, as most
of these do skew toward positive coverage, potentially skipping over the initial failed
tries, things that went wrong, or things that are still going wrong. However, the
context provided can enable you to pattern match problems and solutions onto your
organization and team. Sometimes this can provide confirmation of your chosen
technology stack or approach, and on other occasions this can cause you to rethink!
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Use cases and best practices can often be found in written and presentation format.
Generally we recommend looking for both, and the advantage of conference presen‐
tations is that you can chat with the presenters after the talk in order to learn more!
Following is a list of conferences that we regularly attend:

• QCon conference series•
• CraftConf•
• APIDays (API-focused)•
• KubeCon (platform-specific)•
• Devoxx / JavaOne (language-specific)•
• O’Reilly online events•

Learning by Doing
We believe that architects should remain as practicing software engineers. You may
not be pushing code to production each day, but we recommend carving out time
in your schedule to periodically pair with an engineer on your team or conduct
research and experiment with the latest technologies. Without doing this regularly,
it is easy for an architect’s empathy for developers to fade. Doing this work also
enables you to understand new friction points or a toil that may have been introduced
by the adoption of new technologies. For example, anecdotally we found that many
architects initially misunderstood the impact that container technology would have
on developer toolchains. Unless you have experience in building container images
and pushing them to a remote registry, it’s easy to discount the impact of these
actions on your daily workflow of building and maintaining APIs.

Learning by Teaching
As is hopefully evident from this book, we also learn a lot through the act of teaching.
Whether this is writing books, teaching courses, or presenting at conferences, noth‐
ing beats the experience of assembling the information required to teach a concept.
All too often we realize during this process that we don’t quite understand a concept,
or when asked a question by a student we suddenly appreciate that there is a gap in
our understanding.

It is our opinion that another core role of an architect is teaching. Whether it’s
educating developers about the fundamentals or sharing new best practices, this act
of teaching will continually reinforce your skill set and establish your credibility
within the larger team.

Best of luck on your journey to mastering API architecture.
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