
WHITEPAPER

Security
Best Practices
for Apache Pulsar

Apache Pulsar is rapidly becoming the go-to technology for enterprises that want
to modernize their event driven architectures to provide real time data processing
capabilities across their organization.

As the volume of real time messages and events grows, so does the sensitivity of the
data being processed by Apache Pulsar. In turn, the need to ensure that Pulsar is
configured securely and that the necessary safeguards have been implemented to
prevent data breaches and other risks to this data is a critical factor for enterprises
when adopting this technology.

Fortunately, Apache Pulsar has been built from the ground up to provide a foundation
of security. DataStax has extended this even further to provide an enterprise ready
distribution of Apache Pulsar through the DataStax Luna Streaming product.



01

A Layered Approach
to Security

In this white paper we will walk through common aspects of
security that you should take into account when implementing
Apache Pulsar along with guidance for how to configure your
Pulsar instance to ensure secure operations:

Infrastructure: With an emphasis on Kubernetes (k8s) based deployment, what
considerations and techniques should you employ to secure your Apache Pulsar
deployment?

Network Security: What can you do to ensure all communication within Pulsar
occurs over secure channels?

Data Security: How should you secure message data and what steps would you
need to take to protect messages based on the sensitivity and classification of the
data they contain?

Identity & Access Management: How can you configure Apache Pulsar to work with
your organization’s single sign on (SSO), identity provider, access control manager to
provide authentication and authorization?

This whitepaper will also provide you with a guide to securely configure and operate
DataStax Luna Streaming using many of the standard features found in Apache Pulsar as
well as capabilities such as SSO integration and enterprise authentication/authorization
which are exclusive to DataStax Luna Streaming.

2 Pulsar Security Whitepaper



02

Infrastructure Security
on Kubernetes

Kubernetes provides general guidance around
best practices for securing a k8s cluster.

Comprehensive Kubernetes security is outside the scope of this document, however there
are a number of Pulsar-specific configurations that you should be aware of when running
your cluster on Kubernetes. Luckily, the DataStax Helm Chart installer for Luna Streaming
gives you a seamless way to quickly stand up your Apache Pulsar cluster using a
configuration that automatically applies these configurations.

Container Privilege Levels

Like any enterprise software, you should strive to implement a policy of least privileges
to ensure that the user the software is running as has the necessary permissions to
carry out its tasks, but no more.

When using DataStax Luna Streaming, the default configuration will ensure that your
Pulsar containers run as the pulsar user rather than root. This user is configured with
group permissions to access the necessary locations on the container’s filesystem and to
invoke the necessary commands, but does not have superuser access on the container.

Audit Logging

Apache Pulsar using log4J as its logging framework. By default, Pulsar will log failed
authentication events from the following classes/log levels:

org.apache.pulsar.broker.web.AuthenticationFilter / WARN

org.apache.pulsar.broker.service.ServerCnx / INFO

Likewise, authorization failures are captured by the following class / log level:

org.apache.pulsar.broker.service.ServerCnx / WARN

As part of your ongoing monitoring of Pulsar, you can use a third party product to monitor
the content of these logs to surface potential security issues such as brute force attacks
which you can then appropriately respond to.

3 Pulsar Security Whitepaper

https://kubernetes.io/docs/tasks/administer-cluster/securing-a-cluster/
https://github.com/datastax/pulsar-helm-chart


03

Network Security

Securing Connections Between Pulsar Components

If the distribution of Apache Pulsar you are using is DataStax Luna Streaming, then you
will find that configuring TLS between components is a matter of simple configuration
in the values.yaml file you supply as part of your Helm chart installation.

4 Pulsar Security Whitepaper

https://github.com/datastax/pulsar-helm-chart/blob/master/helm-chart-sources/pulsar/values.yaml


In this file you will find a TLS section which allows you to enable TLS selectively.
The relevant section is shown here:

enableTls: false

tlsSecretName: pulsar-tls

tls:

zookeeper:

enabled: false

# Enable TLS between broker and BookKeeper

bookkeeper:

enabled: false

# Enable TLS between function worker and broker

function:

enabled: false

# Enable TLS between WebSocket proxy and broker

websocket:

enabled: false

Helm chart values to configure TLS between Apache Pulsar components.

Securing Apache Pulsar Admin API Access

Pulsar provides a REST API endpoint which is used by the pulsar-admin command line
interface as well as the Java administrative API. By default, the HTTP endpoint exposed
by Pulsar is unencrypted. Rectifying this is simply a matter of configuring the appropriate
TLS certificates and configuring them within Pulsar.

To accomplish this, you will need to configure the webServicePortTls property in the
broker.conf file to enable TLS.

One you have configured TLS, you will also need to enable authentication on this endpoint
by setting the following properties in broker.conf:

authenticationEnabled=true

authorizationEnabled=true

authenticationProviders=<desired provider>

An example of configuring secure access on the broker can be found in the Pulsar
documentation.

5 Pulsar Security Whitepaper

https://github.com/apache/pulsar/blob/master/conf/broker.conf
https://pulsar.apache.org/docs/en/security-jwt/#enable-token-authentication-on-brokers
https://pulsar.apache.org/docs/en/security-jwt/#enable-token-authentication-on-brokers


Configuring a Secure Channel for Clients

Pulsar clients communicate with the Pulsar brokers using the Pulsar binary protocol
which is based on Protobuf. Clients establish a connection either directly to the broker(s)
or to the Pulsar proxy which then routes the client’s request to the appropriate broker to
handle the request.

By default, Pulsar configures brokers to communicate over unencrypted connections.
To change this, you must configure the broker.conf to enable TLS. This is done by
configuring the brokerServicePortTls property to have a value of true. Additionally, you
can configure the appropriate settings in that same file to instruct Pulsar to use the TLS
certificates which have been issued by your organization’s certificate authority.

Likewise, when using the Pulsar proxy component to serve as router to brokers, a similar
configuration can be made in the proxy.conf file to ensure that clients that connect to
Pulsar do so over a secure channel.

6 Pulsar Security Whitepaper

https://github.com/apache/pulsar/blob/master/conf/broker.conf
https://github.com/apache/pulsar/blob/master/conf/proxy.conf


04

Ensuring Data Security
and Confidentiality

Encrypting Message Data

Currently BookKeeper does not provide support for encrypted ledger data. This means
that there are two options for encrypting message data at rest. The first is to rely on
encryption mechanisms at the physical storage layer such as disk level encryption. These
solutions will vary from provider to provider, however many common solutions encrypt
disks only when they are unmounted, providing limited protection against an attacker
who has access to the VM/container where the disks are mounted.

Luckily, Pulsar supports end-to-end encryption of message data. Using this approach, the
message producer encrypts messages before publishing them to Pulsar. The encrypted
ciphertext is stored as a byte array in BookKeeper and decrypted by message consumers.

7 Pulsar Security Whitepaper



This approach offers an airtight approach to encrypt message data with the tradeoff of
complexity for managing consumers and for accessing and replaying historical stream
data; by default Puslar will rotate the encryption keys every 4 hours.

Message Retention and Purging

One standard way to prevent data leaks is to simply delete data that is no longer required.
Pulsar provides several mechanisms to assist with this. The first is that for a given topic,
you have the option of configuring it as either persistent or non-persistent (ephemeral).
Topics of either type can be easily identified by inspecting the fully qualified topic name.
Persistent and non-persistent topics will begin with persistent:// and
non-persistent:// respectively.

Non-persistent topics will never have their data persisted to BookKeeper. This can be
convenient for use cases which need to be optimized for performance or for cases where
message data loses its value if not immediately processed. This same capability can also
be beneficial for cases where you want to avoid persisting sensitive data all together
such as in the context of payment use cases or where patient medical data is involved.

For cases where message persistence is desired, but where you want to purge data after
a certain period of time, you can configure message retention policies at the namespace
level within Pulsar. This is convenient if you have data which is subject to regulatory
compliance such as GDPR where the commonly recommended practice is to retain
applicable personal data for only as long as necessary before purging it from your
system. Using this capability in Pulsar you can set a retention period that is appropriate
for your organization, say 60 or 90 days, after which message data will be automatically
purged from the system.

Data Masking Using Pulsar Functions

Apache Pulsar includes a capability known as Pulsar Functions for in-stream processing
of message data. This feature provides a simple mechanism which can be used to
preserve the benefits of historical stream data while adhering to best practices around
data privacy and retention. For example, from a data science perspective, it may be
beneficial to retain a historical record of order and payment messages from an
ecommerce system. However, these messages may contain PII or payment card data
which introduce risks if stored indefinitely.

8 Pulsar Security Whitepaper



Pulsar functions allows you to programmatically modify message data and pass it
along to a new topic:

Using this technique you can implement data masking, data scrubbing and other
approaches to adhere to your organization’s data handling procedures, while enabling
deeper analysis of event stream data from a historical context.

Message Validation Using Schemas

Ensuring message data is valid provides benefits from a data cleansing perspective, but
also offers security benefits as well. While we typically think of things like SQL injection
attacks as a concern for web applications, a similar attack surface exists anywhere that
data is taken as an input and turned into a database command to modify the state of a
data store. Likewise, an attacker could try to create an overflow condition by sending in
very, very large amounts of data in a message to overwhelm your consumers and trigger
downstream problems throughout your organization.

Pulsar provides support for Avro and native Protobuf based schemas. Using these allows
you to ensure type safety of message payloads along with finer grained control over
individual data elements. For example, using Avro it is possible to validate JSON payload
data using regular expressions, value ranges and other common approaches to ensure
data adheres to the format and acceptable limitations you set.

9 Pulsar Security Whitepaper



05

Identify and Access
Management

Authentication in Pulsar

Pulsar uses a pluggable authentication model that includes support for the following
authentication mechanisms:

● TLS Authentication – use client certificates to authenticate clients.
● Athenz – leverage Athenz tokens for client authentication
● Kerberos – SASL based approach for authentication using Kerberos
● JSON Web Token Authentication – JWT signature based authentication tied to

subject (sub) claim
● OAuth2 – use the OAuth2 client credentials flow to obtain tokens for authentication.

Each of these approaches is backed by an AuthenticationProvider implementation which is
responsible for matching the subject in Pulsar to the role which that user has been granted.

DataStax Luna Streaming extends these options with more full featured enterprise
authentication capabilities. Luna Streaming ships with Keycloak, a full featured, open
source identity and access management solution. Keycloak allows you to integrate a
wide range of common authentication solutions into Pulsar including LDAP, SAML,
OpenID Connect and others. Keycloak also supports user federation using Kerberos and
LDAP. This ensures that developers can use standard technologies already in use within
your organization to address common security requirements.

Authorization in Pulsar

Pulsar manages permissions at a namespace level and uses the concept of a role to
specify what actions the role is allowed to perform within the namespace. The allowed
actions are either produce or consume.

Additionally, Pulsar has a predefined set of permissions called superuser at the cluster
level and a predefined set of permissions called admin at the tenant level.

Superusers, as the name suggests, are allowed to perform any action within the cluster
including administering tenants, namespaces and other resources as well as producing
to/consuming from any topics anywhere in the cluster.

10 Pulsar Security Whitepaper



To specify the roles which should be given superuser permissions, you must supply them
as part of your broker.conf file. If you are using the DataStax Luna Streaming helm
chart, you can also specify this in the values.yaml file:

superUserRoles=my-super-user-1,my-super-user-2,my-proxy-role

Admins are limited to the tenant and have the ability to administer namespaces and other
resources within the tenant as well as producing to/consuming from any topics anywhere
in the tenant. To grant a role admin permissions on a tenant, you can specify this at
tenant creation time:

bin/pulsar-admin tenants create my-tenant \

--admin-roles my-admin-role \

--allowed-clusters us-west,us-east

If you want to change the roles which have been granted admin permissions on a given
tenant you can do that as well using this command:

bin/pulsar-admin tenants update my-tenant \

--admin-roles original-admin-role, new-admin-role

For finer grained access at a namespace level, the following command will allow you to
specify which roles are allowed to consume from/produce to topics in the namespace:

bin/pulsar-admin namespaces grant-permission my-namespace \

--actions consume \

--roles consumer-role

The allowed actions are either produce or consume. These can also be set when creating
a namespace.

Monitoring Authentication Metrics

Pulsar exposes metrics that give you visibility into authentication events. These metrics
are exposed in the standard Prometheus format, making it straightforward to connect
Pulsar with existing monitoring solutions in use within your organization. In addition to
the audit logging suggestions outlined above, monitoring these metrics can give you
visibility to incidents where authentication failures may spike and where further
investigation is likely warranted.

11 Pulsar Security Whitepaper

https://github.com/datastax/pulsar-helm-chart/blob/master/helm-chart-sources/pulsar/values.yaml
https://pulsar.apache.org/docs/en/reference-metrics/#authentication-metrics


06

Lunar Streaming
Security Differentiators

Security is a key part of implementing and adopting any technology.
While Apache Pulsar provides a strong foundation for security, these
capabilities alone may not be sufficient to meet the needs of
enterprise security standards in place at most large organizations.

While we’ve covered many aspects of securing your Pulsar instances in this paper, there are
other out of the box capabilities which are exclusive to DataStax Luna Streaming as well:

Vulnerability Scanning – Every release of DataStax Luna Streaming undergoes
vulnerability scans to ensure there are no known severe vulnerabilities in the release.

Rapid Patches – When security vulnerabilities are detected DataStax is able to release
patches outside the normal OSS release process which can result in faster time to
remediation for security issues.

Enterprise Authentication / Authorization – DataStax Luna Streaming ships with
support for enterprise SSO and access control standards such as LDAP, SAML,
OpenID Connect and others.

Contact / Feedback / Questions

If you have feedback or questions about the content of this whitepaper or Pulsar in
general, we’d love to hear from you!  You can reach the DataStax team who is focused
on Apache Pulsar by emailing pulsar-team@datastax.com.

© 2021 DataStax, All Rights Reserved. DataStax, Titan, and TitanDB are registered trademarks of
DataStax, Inc. and its subsidiaries in the United States and/or other countries.

Apache, Apache Cassandra, and Cassandra are either registered trademarks or trademarks of the
Apache Software Foundation or its subsidiaries in Canada, the United States, and/or other countries.

12 Pulsar Security Whitepaper

mailto:pulsar-team@datastax.com

