
Stackgenie
Moving from Intel
to AMD-powered instances

Demonstrating the seamless transition of
workloads to more efficient AMD-based
instances.

A little change can go a
long way, saving you up to

10% of your compute costs
Making a simple change to a single line of
code can save AWS customers up to 10%
of their compute costs. A perfect solution

for those customers looking at price
optimised compute options with greater

flexibility for right-sizing workloads.

TABLE
OF

CONTENTS

01 Introduction

02 AMD EPYC™ variants

04

06

03 Workloads Comparison

05

07

08 Conclusion

Moving from Intel to AMD
EPYC™ variants

Simple EC2 instance
update

Moving an EC2 instance
application

Moving a Microservice
Demo Application

1. Flexibility and choice
2. Cost-savings
3. Seamless Workload Transition

1. Update from AWS Console
2. Update from AWS CLI

1. Terraform Deployment
2. CloudFormation Deployment

1. Terraform Deployment
2. CloudFormation Deployment

3 | stackgenie.io

INTRODUCTION

As a cloud service, Amazon Elastic
Compute Cloud (Amazon EC2) provides
its customers with cloud-based resizable
compute capacity. Allowing users to
have complete control of their computing
resources whilst running on Amazon’s
proven computing environment.

Utilising cloud-computing through
Amazon EC2, means developers can
create and launch new server instances in
mere minutes, thus allowing quick scaling
capabilities through elastic web-scale
computing.

Intel has a long-standing relationship,
in excess of 15 years, with Amazon
Web Services (AWS) collaborating on
developing, building and supporting
cloud services. This partnership has made
technology more accessible and allowed
AWS customers to push the boundaries of
innovation.

However, with the exponential growth
of workloads, each with different
characteristics and infrastructure needs,
AWS recognised its customers had limited
choices for running workloads that were
also optimised for performance and cost.

Partnering with AMD since 2018, AWS
now delivers a wide variety of choices to
right-size workloads whilst simultaneously
lowering compute and memory costs for
its customers.

The AWS and AMD collaboration resulted
in the first generation AMD EPYC™
processors in 2018, followed by the
second generation version in 2020, and
more recently combining the second
generation AMD EPYC™ processors and
AMD Radeon Pro GPUs with Amazon
EC2 G4ad instances. The launch of third
generation AMD EPYC™ processors will
further increase the flexibility and choices
available too.

AWS customers can use EC2 instances
powered by AMD for a wide variety of
workloads including databases, enterprise
applications, big data analytics, batch
processing and gaming.

Stackgenie | Moving from Intel to AMD-powered instances

Originally built to provide AWS customers
more choice when running Amazon EC2
instances using AMD EPYC™ processors.
AMD-powered instances provide flexibility
and choice through helping optimise both
cost and performance of workloads.

Customers can improve this optimisation
further by incorporating right-sizing
during the transition process, as well as
periodically reviewing as an ongoing
process within their organisation.

AMD EPYC™ BENEFITS

Flexibility and Choice
Not only do EC2 instances that feature
AMD EPYC™ processors deliver up to 10%
lower costs for Worldwide regions than
comparable instances, the C5a instances
also offers the lowest price per x86 vCPU
for EC2-based workloads too.

Additionally, in the Asia Pacific (Mumbai)
region, EC2 customers are seeing up
to 45% lower costs than comparable
instances when using AMD EPYC™
processors.

Cost-savings

For applications running on Amazon’s existing x86 EC2 instances (powered by Intel),
customers can easily migrate over to the AMD variants with minimal, if any, modification
requirements. Switch from C5, T3, M5 and R5 instances to the AMD variants that are
available in the same sizes and offer application compatibility.

Seamless Workload Transition

5 | stackgenie.io

WORKLOADS COMPARISON

Manufacture AMD EPYC™ Intel

General Purpose

T3a
Unlimited CPU burst
0.5:2 GiB to vCPU
Up to 2.5 GHz 1st Gen AMD EPYC*
Up to 8vCPU / 32 GiB

T3
Burstable CPU usage
SKX-up to 8 vCPUs

M5a
4:1 GiB to vCPU
Up to 2.5 GHz 1st Gen AMD EPYC*
Up to 20 Gbps network Up to 96
vCPU / 384 GiB

M5
Non-burstable CPU usage
SKX-up to 96 vCPUs

Compute
Optimised

C5a
Up to 3.3 GHz EPYC* (2nd Gen)
Up to 25 Gbps network
Up to 96 vCPU / 192 GiB

C5
High-performance low price/
compute ratio
SKX-up to 36vCPUs

Memory
Optimised

R5a | 8:1 GiB to vCPU Up to 2.5
GHz 1st Gen AMD EPYC* Up to 20
Gbps network Up to 768 GiB / 96
vCPU

R5 | up to 768 GiB RAM SKX or
CLX Up to 96 VCPUs

Graphics-
intensive

G4ad
Ultra-Advanced
Up to 64 vCPUs
Memory: up to 256
GPU: 32 AMD Radeon Pro V520
Storage: up to 2400

G4dn
Advanced
Up to 96 vCPUs
Memory: upto 384
GPU: up to 128 NVIDIA T4
Tensor
Storage: up to 2x900

On-demand instances prices

Stackgenie | Moving from Intel to AMD-powered instances

https://aws.amazon.com/ec2/pricing/on-demand/

MOVING FROM INTEL TO
AMD EPYC™ VARIANTS

As AMD EPYC™ processors are based on the same x86-64
architecture as Intel processors, applications that are already
running on existing EC2 instances can easily be transitioned
across. In most cases, with minimal, if any, modification
requirements. Due to the application compatibility for R5, M5,
T3 and C5 instances, the transition to AMD EPYC™ variants is as
simple as stopping an instance, switching the type to AMD and
starting it back up.

Amazon Elastic Compute Cloud (EC2)
offers the broadest and deepest compute
platform, with over 400 instances and
choice of processor, storage, networking,
operating system, and purchase model.

EC2 allows users to build apps to
automate scaling according to changing
needs and peak periods, and makes
it simple to deploy virtual servers and
manage storage, lessening the need to
invest in hardware and helping streamline
development processes.

AMD EPYC™ 7000 series processors
feature an all core turbo clock speed of
2.5GHz. Amazon EC2 instances powered
by AMD EPYC™ processors can deliver
optimised compute and memory at a
lower cost than comparable instances.

Since many workloads utilise only a
fraction of a processor’s maximum
performance, these instances offer a
better fit for purpose for many workloads.
Therefore, AMD-based instances provide
additional options for AWS customers
that are not fully utilising their compute
resources, and can result in a cost savings
benefit of up to 10% too.

7 | stackgenie.io

05

SIMPLE EC2 INSTANCE UPDATE
Update from AWS Console

This section demonstrates how an application running in an AWS EC2 Intel-based
instance can be moved to an EC2 AMD-based instance using the web application,
AWS Management Console, which comprises of, and refers to, a broad collection of
service consoles for managing Amazon Web Services.

01

Verify the current instance type.

The Process

Stackgenie | Moving from Intel to AMD-powered instances

https://console.aws.amazon.com/

02

03

Stop running the existing instance.

Find a similar instance type in AMD EPYC™.

04

Confirm the instance has stopped.

9 | stackgenie.io

https://aws.amazon.com/ec2/instance-types/

05

Change the instance type.

06

Start the instance.

Stackgenie | Moving from Intel to AMD-powered instances

The AWS Command Line Interface (CLI) is a unified tool to manage your
AWS services. With just one tool to download and configure, you can control
multiple AWS services from the command line and automate them through
scripts.

Please follow the link to configure AWS CLI credentials to execute following
commands.

07

Confirm the instance has started successfully.

Update from AWS CLI

01

Verify the current instance type.

The Process

11 | stackgenie.io

https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-quickstart.html

02

03

Find a similar instance type in AMD EPYC™.

Log in to the instance and fetch the CPU information.

Stackgenie | Moving from Intel to AMD-powered instances

https://aws.amazon.com/ec2/instance-types/

04

05

Stop running the instance.

Confirm the instance has stopped.

13 | stackgenie.io

06

Log in to the instance and fetch the CPU information.

Stackgenie | Moving from Intel to AMD-powered instances

07

Start the new instance type.

08

09

Confirm the instance has started successfully.

Log in to the instance and fetch the CPU information.

15 | stackgenie.io

06

MOVEMENT OF AN EC2 INSTANCE
APPLICATION

HashiCorp Vault
This section demonstrates how an application running on several EC2 instances can be
moved using either AWS CloudFormation or Terraform. The exercise uses the HashiCorp
Vault application, an open-source tool for securely storing secrets and sensitive data in
dynamic cloud environments.

The infrastructure is currently deployed in AWS EC2 instance; the underlying nodes are
using AWS Intel instances. The transition process will update this infrastructure from Intel
EC2 instances to AMD EPYC™ EC2 instances.

The Vault Servers, hosted on EC2 instances,
are created using an Auto Scaling Group
(ASG). So, if any instance goes down,
it’s automatically replaced. It also uses
DynamoDB in the on-demand mode which
means that no management is required for
server capacity, storage, or throughput.

When Vault is in High Availability Mode,
it enables multiple Vault Servers in the
deployment. At any given time, one Vault
Server will be “active” and serving the
incoming requests/writing/reading the
encrypted data. Other Vault Servers are
put in “stand-by” mode in case the “active”
server fails.

HashiCorp Vault | Stores and
secures access for sensitive
data using a UI, CLI or HTTP
API.

HashiCorp Terraform |
Open-source IaC software
that provides a consistent
CLI workflow to manage
cloud services.

AWS EC2 | Provides a wide
selection of instance types
optimised to fit different use
cases.

AWS DynamoDB | Fully
managed, serverless, key-
value NoSQL database
for high-performance
applications.

Tools

Stackgenie | Moving from Intel to AMD-powered instances

Application Architecture in AWS

17 | stackgenie.io

Terraform is an open-source, infrastructure-as-code (IaC) software tool that allows you
to build, change and version infrastructure, both safely and efficiently. It can be used
to manage existing service providers as well as custom in-house solutions, for both low-
level (eg compute instances, storage, networking) and high-level components (eg DNS
entries, SaaS features).

This repository contains a set of Terraform files for deploying a Vault cluster on AWS.
HashiCorp ```Vault helps to store the infrastructural secrets and credentials in a highly
available setup.

Deployment with Terraform

Clone the application GitHub repository, and follow the Readme.md file to
configure and deploy the HashiCorp Vault in AWS with the help of Terraform.

This project requires that you have
Terraform 0.14+ installed. Both
deployment and management should be
done through Terraform.

The deployment process is done using
a Terraform template, by cloning the
repository into CLI and modifying the
required parameters, then executing a
command, the entire infrastructure will
be provisioned. Users can access the
vault dashboard via Route53 or can use
load balancer DNS.

Stackgenie | Moving from Intel to AMD-powered instances

Deployment Architecture

Terraform will create a base
infrastructure containing:

 • EC2 instances
 • DynamoDB
 • S3 bucket
 • KMS Key
 • an Application Load Balancer
 • an Autoscaling Group
 • Route53 subdomain entry
 • VPC and its components

Terraform also executes a user-data which helps to initialise the vault and allows it to
auto-unseal with the help of a KMS key. The root token and key shards will be uploaded
to an S3-bucket that has to be created by Terraform.

The DynamoDB storage will provide high availability and is used to persist Vault's data in
the DynamoDB table.

https://github.com/stackgenie/stackgenie-devops-amd01
https://github.com/stackgenie/stackgenie-devops-amd01#readme

19 | stackgenie.io

01

AWS EC2 Instance View: Instances are currently running on Intel t3.medium.

The Process

Moving from t3.medium instance infrastructure to an AMD-based t3a.medium
instance.

02

Clone the repository.

03

Go to the Terraform variable file, update the file (variables.tf) with the
“Instance type” to AMD EPYC™ (t3a.medium).

04

05

Once the file is updated, execute the below commands.

AWS Instance View: Instance type has been modified from Intel powered
t3.medium to AMD EPYC™ powered t3a.medium.

Stackgenie | Moving from Intel to AMD-powered instances

Terraform Plan Output:

06

Vault Browser View: Verify the application is working as expected.

07

The result is a successful transition of EC2 instances from Intel-based
processors to AMD variants using Terraform.

21 | stackgenie.io

CloudFormation is an AWS managed
service that allows you to manage
the infrastructure in AWS using
templates. As the name suggests,
it is an Infrastructure as code (IaC)
tool. CloudFormation is used for
automating the deployment and
configuration of the majority of
services in AWS.

Packer is an open source tool from
HashiCorp that can be used to create
golden images from a single source of
configuration.

Ansible is a highly versatile
open source tool. It can handle
configuration management,
application deployment, cloud
provisioning, ad-hoc task execution,
network automation and multi-node
orchestration.

Deployment with CloudFormation, Packer and
Ansible

HashiCorp Vault | Stores and
secures access for sensitive
data using a UI, CLI or HTTP
API.

HashiCorp Packer | Creates
identical machine images
for multiple platforms from a
single source configuration.

AWS CloudFormation |
Treats infrastructure as code
to model, provision and
manage AWS and third-party
resources.

AWS EC2 | Provides a wide
selection of instance types
optimised to fit different use
cases.

Tools

AWS DynamoDB | Fully
managed, serverless,
key-value NoSQL database
for high-performance
applications.

The CloudFormation templates (vault_cfn.yaml) available in the GitHub
repository will deploy the application in AWS. This CloudFormation template
deploys a VPC with both public and private subnet across two Availability
Zones. It also provisions an instance backed by an autoscaling group which
is using a custom Amazon Machine Image (AMI) created with Packer. Finally,
the CloudFormation template will create an application load balancer, auto
scaling group, DynamoDB table, SSM Parameter Store, KMS key and Route53
subdomain entry.

CloudFormation Templates

Stackgenie | Moving from Intel to AMD-powered instances

Deployment Architecture

Clone the application GitHub repository, and follow the Readme.md file to
deploy the application. The packer builder command will provision an AMI with
the help of the Ansible provisioner.

Use a custom build AMI, as this
application is deployed into an EC2
instance, by using HCP Packer with
Ansible provisioner. The deployment
process can start once the custom
AMI is ready. This is done using a
CloudFormation template, by cloning
the repository into CLI and modifying
the required parameters, then executing
a command, the entire infrastructure will
be provisioned. Users can access the
vault dashboard via Route53 or can use
load balancer DNS.

The user-data in the Launch
Template will initialise the Vault
cluster and upload the root keys and
recovery keys in the SSM parameter
store. An encryption key from AWS
Key Management Services (KMS) will
help to auto-unseal Vault.

Whilst, the DynamoDB storage
backend supports high availability
and is used to persist Vault’s data in
the DynamoDB table.

https://github.com/stackgenie/stackgenie-devops-amd02
https://github.com/stackgenie/stackgenie-devops-amd02#readme

23 | stackgenie.io

01

02

AWS EC2 Instance View: Current infrastructure is running on Intel c5.large instance.

AWS CFN Stack View: To update the current CloudFormation Stack that is
deployed, click on ‘update’.

03

AWS CFN Stack Actions: Click on ‘use current template’.

In this example, the application is running on an Intel-powered c5.large EC2 instance.
To move the application to an AMD EPYC™ powered c5a.large instance, update the
“Instance Type” parameter on the CloudFormation stack; the update will redeploy the
application and change the EC2 instance type.

The Process

04

AWS CFN Stack actions: Change the instance type to AMD EPYC™ powered
c5a.large. Run the Stack by clicking ‘next’, then ‘finish’.

Stackgenie | Moving from Intel to AMD-powered instances

05

AWS EC2 Instance View: The Instance Type has been modified from
Intel-powered c5.large to AMD EPYC™ powered c5a.large.

06

Vault Browser View: Verify the application is working as expected.

07

The result is a successful transition of EC2 instances from Intel-based
processors to AMD variants using CloudFormation.

07

MOVEMENT OF A MICROSERVICE
WEB APPLICATION WITH DATABASES

e-Commerce Application
In this example, to aid the demonstrations and testing of microservices and cloud-native
technologies, the application for the purpose of migration is an e-commerce application.
As an online shop that sells products, it is a multi-tiered application that has both a web
front-end, that’s user-facing, and a database back-end. Please refer to the online shop
application GitHub repository.

The application is built using Spring Boot, Go kit and Node.js and is packaged in Docker
containers. You can read more about the application design.

HashiCorp Terraform |
Open-source IaC software
that provides a consistent
CLI workflow to manage
cloud services.

Amazon EKS | Open-source
system for automating
deployment, scaling
and management of
containerised applications.

Argo CD | A declarative,
GitOps continuous delivery
tool for Kubernetes.

NGINX ingress controller |
Ingress exposes HTT and
HTTPS routes from outside
the cluster to services with the
cluster. An ingress controller
for Kubernetes using NGINX
as a reverse proxy and load
balancer.

Tools

25 | stackgenie.io

ExternalDNS | Synchronises
exposed Kubernetes
Services and Ingresses with
DNS providers, and makes
Kubernetes resources
discoverable via public DNS
servers.

https://github.com/microservices-demo/microservices-demo
https://spring.io/projects/spring-boot
http://gokit.io/
https://nodejs.org/en/
https://github.com/microservices-demo/microservices-demo/blob/master/internal-docs/design.md

Stackgenie | Moving from Intel to AMD-powered instances

e-Commerce Application Design

The architecture of the demo
microservices application
was intentionally designed to
provide as many microservices
as possible, as well as being
polyglot to exercise a number
of different technologies. The
microservices are roughly
defined by the function in an
e-Commerce site. All services
communicate using REST over
HTTP. This was chosen due to
the simplicity of development
and testing.

The Application containers are deployed on EKS Cluster with CI/CD tool Argo CD so the
application deployment and lifecycle management should be automated, auditable,
and easy to understand. It also uses some supporting tools NGINX ingress controller,
and external DNS provisioner. All these microservices are scheduled on Amazon EKS
managed node groups to automate the provisioning and lifecycle management of nodes
(Amazon EC2 instances) for Amazon EKS Kubernetes clusters and all managed nodes
are provisioned as part of an Amazon EC2 Auto Scaling group that’s managed for you by
Amazon EKS.

27 | stackgenie.io

Application Structure in EKS

The application is currently
deployed in EKS, with the underlying
EC2 instances using AWS Intel
c5.large instances.

The transition process will update
this infrastructure from c5.large
instances to c5a.large instances
that are based on AMD EPYC™.

Stackgenie | Moving from Intel to AMD-powered instances

Deployment with Terraform

Clone the application repository and follow the readme to deploy the application in
EKS. This application is deployed using tools such as HashiCorp Terraform, AWS EKS
(Elastic Kubernetes Services), and Argo CD.

In this example, Terraform is used only for deploying the AWS infrastructure.
The AWS infrastructure includes EKS cluster, VPCs and its components.

Also, Argo CD is already deployed on the cluster using an
Argo manifest. The microservices application is deployed
with Argo CD. Optional services like “Nginx ingress
controller along with ExternalDNS” will also be deployed
on the cluster.

The movement of these applications on EKS node group
from AWS Intel c5.large instance to AWS AMD EPYC™
powered c5a.large can be achieved by changing the
instance type on the Terraform variable file.

Deployment Architecture

Stackgenie | Moving from Intel to AMD-powered instances

https://github.com/stackgenie/stackgenie-devops-amd03
https://github.com/stackgenie/stackgenie-devops-amd03#readme

29 | stackgenie.io

This project requires Terraform 0.14+ and Argo CD CL. The deployment process
uses a Terraform template, by cloning the repository into CLI and modifying the
required parameters, then executing a command, the entire infrastructure will be
provisioned. Once the infrastructure is ready, the application is deployed using
Argo CD CLI. Users can access the application via Route53 or can port-forward the
application to localhost.

01

02

AWS EC2 Instance View: EC2 instances (EKS nodes) are running on Intel c5.large.

Clone the repository.

03

For changing the instance type from Intel-powered c5.large to
AMD EPYC™ powered c5a.large, update the “node_instance_type” in

Terraform variable file (variables.tf).

Moving from c5.large instance to an AMD-based c5a.large instance.

The Process

04

Applying Terraform changes will update the instance type to c5a.large.

Stackgenie | Moving from Intel to AMD-powered instances

05

AWS Console Cluster View: The EC2 instances are modified from Intel
c5.large to AMD EPYC™ powered c5a.large.

06

AWS Console instance view: The EC2 instances after the transition.

07

Browser result: Application is working as expected after the instance type is
changed from c5.large to c5a.large.

As in the previous example, Argo CD
is deployed on the cluster using an
Argo manifest. The microservices
application is deployed with Argo CD.
Optional services like “Nginx ingress
controller along with ExternalDNS”
will also be deployed on the cluster.

For migrating the application from
the AWS Intel c5.large instance to
AWS AMD EPYC™ powered c5a.large,
update the CloudFormation stack with
a new instance type (c5a.large).

Deployment with CloudFormation

31 | stackgenie.io

Argo CD automates the deployment
of the desired application states in
the specified target environments.

Application deployments can track
updates to branches, tags, or pinned
to a specific version of manifests at a
Git commit.

Argo CD

Amazon EKS | Open-source
system for automating
deployment, scaling
and management of
containerised applications.

Argo CD | A declarative,
GitOps continuous delivery
tool for Kubernetes.

NGINX ingress controller |
Ingress exposes HTT and
HTTPS routes from outside
the cluster to services with the
cluster. An ingress controller
for Kubernetes using NGINX
as a reverse proxy and load
balancer.

ExternalDNS | Synchronises
exposed Kubernetes
Services and Ingresses with
DNS providers, and makes
Kubernetes resources
discoverable via public DNS
servers.

Deployment Architecture

Clone the application repository and follow the readme to deploy the
infrastructure and application. Deploying the Cloud Formation Template will
create the AWS infrastructure for the application. The AWS Infrastructure contains
a VPC, EKS cluster, and EKS NodeGroup.

Stackgenie | Moving from Intel to AMD-powered instances

Tools
AWS CloudFormation |
Treats infrastructure as code
to model, provision and
manage AWS and third-party
resources.

https://github.com/stackgenie/stackgenie-devops-amd04
https://github.com/stackgenie/stackgenie-devops-amd04#readme

33 | stackgenie.io

01

AWS CFN stack console view: The Intel EC2 instance is c5.large as highlighted below.

Moving from c5.large instance infrastructure to an AMD-based c5a.large instance.

The Process

The application is deployed into EKS, here we are using CloudFormation
for infrastructure deployment and Argo CD for the application
deployment. First, clone the repository and modify the required
parameters, then execute the command, the entire infrastructure will be
provisioned. Once we have the infrastructure, next, deploy an application
using Argo CD. Users can access the application via Route53 or can
port-forward the application to localhost.

03

AWS console actions: Choose ‘use current template’ and change the instance
type to AMD EPYC™ powered c5a.large.

Stackgenie | Moving from Intel to AMD-powered instances

04

AWS console view: The EC2 instances are modified from Intel c5.large to AMD
EPYC™ powered c5a.large.

02

AWS console actions: Change the instance type to AMD EPYC™ powered
c5a.large by updating the current template:

05

AWS instance view: The EC2 instances after the transition.

06

Browser result: The application is working as expected after moving the
instance type from c5.large to c5a.large.

35 | stackgenie.io

CONCLUSION

Whilst Intel processors have been the default choice
for running instances on Amazon EC2 for well over
a decade, the launch of AMD EPYC™ processors in
2018 provided Amazon customers with alternative
options for running workloads.

Having more availability and choice means AWS
users can optimise for performance and cost, as well
as right-sizing their workloads by choosing from a
wide variety of Intel and AMD-based options.

Both Intel and AMD EPYC™ processors use the same
x86 architecture, which means, in most situations,
applications running on existing EC2 instances can
transition from one to the other, seamlessly.

Same x86 Architecture

Stackgenie | Moving from Intel to AMD-powered instances

This white paper demonstrates the
ease of moving from Intel to AMD-
based instances. As demonstrated
through the various examples, a little
change can go a long way. A single
line of code can save customers up to
10% of their compute costs.

For AWS customers looking at price-
optimised compute options, AMD
EPYC™ provides greater flexibility
when looking at right-sizing instances.

There is also further excitement with
the launch of the third generation of
AMD EPYC™ processors. Customers
will have even more flexibility and
choice with the launch of R6a, C6a
and M6a instances.

37 | stackgenie.io

A little change can save
customers up to 10% of
their compute costs.

Vinayak Kumar
Stackgenie Founder and CEO

WHAT WE DO?

HOW WE SUPPORT YOU

Augment and enhance your people capabilities throughout your
digital transformation journey with us partnering and working as an
extension of your team.

STREAMLINE
Ensure holistic

transformation for
optimal performance.

FINANCE
Keep digital transformation
focused on budget-friendly

practices.

EXPERTS
Bring in expert talent to

drive innovation.

ACCELERATE
Ensure holistic

transformation for
optimal performance.

Stackgenie | Moving from Intel to AMD-powered instances

Take advantage of
our comprehensive,
complementary and
collaborative support
matrix.

INSIGHT
Gain data-backed insights
from customer preferences.

INNOVATE
Go beyond existing

technologies make your
business agile, secure and

streamlined.

STRATEGY
Identify custom strategies to
give you a competitive edge.

CUSTOM
Augment your existing
business systems with
tailored support plans.

39 | stackgenie.io

http://stackgenie.io

Toll-Free: 0330-133-4519

info@stackgenie.io l hello@stackgenie.io

United Kingdom l 71-75 Shelton Street, London, United Kingdom, WC2H 9JQ

India l Orchestra Project, Laham Commercial Complex, Trivandrum, Kerala, India 695582

