Stackgénie |
Moving from Intel
to AMD-powered instances

Demonstrating the seamless transition of
workloads to more efficient AMD-based
instances.

A little change cango a
long way, saving you up to
10% of your compute costs

Making a simple change to a single line of
code can save AWS customers up to 10%
of their compute costs. A perfect solution

for those customers looking at price
optimised compute options with greater
flexibility for right-sizing workloads.

stackgenie

01 Introduction

02 AMDEPYC™variants

1. Flexibility and choice
2. Cost-savings
3. Seamless Workload Transition

03 Workloads Comparison

TABLE
OF
CONTENTS

04 Moving from Intel to AMD
EPYC™ variants

Simple EC2 instance

05 update

1. Update from AWS Console
2. Update from AWS CLI

06 Moving an EC2 instance
application
1. Terraform Deployment
2. CloudFormation Deployment

07 Moving a Microservice
Demo Application

1. Terraform Deployment
2. CloudFormation Deployment

08 Conclusion

3 | stackgenie.io

INTRODUCTION

As a cloud service, Amazon Elastic
Compute Cloud (Amazon EC2) provides
its customers with cloud-based resizable
compute capacity. Allowing users to
have complete control of their computing
resources whilst running on Amazon’s
proven computing environment.

Utilising cloud-computing through
Amazon EC2, means developers can
create and launch new server instances in
mere minutes, thus allowing quick scaling
capabilities through elastic web-scale
computing.

Intel has a long-standing relationship,

in excess of 15 years, with Amazon

Web Services (AWS) collaborating on
developing, building and supporting
cloud services. This partnership has made
technology more accessible and allowed
AWS customers to push the boundaries of

innovation.

nny
m
A\ W\

Stackgenie | Moving from Intel to AMD-powered instances

However, with the exponential growth
of workloads, each with different
characteristics and infrastructure needs,
AWS recognised its customers had limited
choices for running workloads that were
also optimised for performance and cost.

Partnering with AMD since 2018, AWS

now delivers a wide variety of choices to
right-size workloads whilst simultaneously
lowering compute and memory costs for
its customers.

The AWS and AMD collaboration resulted
in the first generation AMD EPYC™
processors in 2018, followed by the
second generation version in 2020, and
more recently combining the second
generation AMD EPYC™ processors and
AMD Radeon Pro GPUs with Amazon

EC2 G4ad instances. The launch of third
generation AMD EPYC™ processors will
further increase the flexibility and choices
available too.

AWS customers can use EC2 instances
powered by AMD for a wide variety of
workloads including databases, enterprise
applications, big data analytics, batch
processing and gaming.

AMD EPY

Flexibility and Choice

Originally built to provide AWS customers
more choice when running Amazon EC2
instances using AMD EPYC™ processors.
AMD-powered instances provide flexibility
and choice through helping optimise both
cost and performance of workloads.

Customers can improve this optimisation
further by incorporating right-sizing
during the transition process, as well as
periodically reviewing as an ongoing
process within their organisation.

™ BENEFITS

Cost-savings

Not only do EC2 instances that feature
AMD EPYC™ processors deliver up to 10%
lower costs for Worldwide regions than
comparable instances, the C5a instances
also offers the lowest price per x84 vCPU
for EC2-based workloads too.

Additionally, in the Asia Pacific (Mumbai)
region, EC2 customers are seeing up

to 45% lower costs than comparable
instances when using AMD EPYC™
processors.

Seamless Workload Transition

For applications running on Amazon’s existing x86 EC2 instances (powered by Intel),
customers can easily migrate over to the AMD variants with minimal, if any, modification
requirements. Switch from C5, T3, M5 and R5 instances to the AMD variants that are
available in the same sizes and offer application compatibility.

5| stackgenie.io

WORKLOADS COMPARISON

Manufacture

General Purpose

Compute
Optimised

Memory
Optimised

B

Graphics-
intensive

AMD EPYC™

T3a

Unlimited CPU burst

0.5:2 GiB to vCPU

Up to 2.5 GHz 1st Gen AMD EPYC*
Up to 8vCPU / 32 GiB

Mb6a

4:1 GiB to vCPU

Up to 2.5 GHz 1st Gen AMD EPYC*
Up to 20 Gbps network Up to 96
vCPU /384 GiB

C5a

Up to 3.3 GHz EPYC* (2nd Gen)
Up to 25 Gbps network

Up to 96 vCPU /192 GiB

R5a | 8:1GiB to vCPU Up to 2.5

GHz 1st Gen AMD EPYC* Up to 20
Gbps network Up to 768 GiB / 96
vCPU

G4ad

Ultra-Advanced

Up to 64 vCPUs

Memory: up to 256

GPU: 32 AMD Radeon Pro V520
Storage: up to 2400

Intel

T3
Burstable CPU usage
SKX-up to 8 vCPUs

M5
Non-burstable CPU usage
SKX-up to 96 vCPUs

C5

High-performance low price/
compute ratio

SKX-up to 36vCPUs

R5 | up to 768 GiB RAM SKX or
CLX Up to 96 VCPUs

G4dn

Advanced

Up to 96 vCPUs

Memory: upto 384

GPU: up to 128 NVIDIA T4
Tensor

Storage: up to 2x200

https://aws.amazon.com/ec2/pricing/on-demand/

MOVING FROM INTEL TO

AMD EPY

Amazon Elastic Compute Cloud (EC2)

offers the broadest and deepest compute

platform, with over 400 instances and
choice of processor, storage, networking,
operating system, and purchase model.

EC2 allows users to build apps to
automate scaling according to changing
needs and peak periods, and makes

it simple to deploy virtual servers and
manage storage, lessening the need to
invest in hardware and helping streamline
development processes.

™ VARIANTS

AMD EPYC™ 7000 series processors
feature an all core turbo clock speed of
2.5GHz. Amazon EC2 instances powered
by AMD EPYC™ processors can deliver
optimised compute and memory at a
lower cost than comparable instances.

Since many workloads utilise only a
fraction of a processor’s maximum
performance, these instances offer a
better fit for purpose for many workloads.
Therefore, AMD-based instances provide
additional options for AWS customers
that are not fully utilising their compute
resources, and can result in a cost savings
benefit of up to 10% too.

As AMD EPYC™ processors are based on the same x86-64
architecture as Intel processors, applications that are already
running on existing EC2 instances can easily be transitioned
across. In most cases, with minimal, if any, modification
requirements. Due to the application compatibility for R5, M5,
T3 and C5 instances, the transition to AMD EPYC™ variants is as
simple as stopping an instance, switching the type to AMD and

starting it back up.

7 | stackgenie.io

SIMPLE EC2 INSTANCE UPDATE

Update from AWS Console

This section demonstrates how an application running in an AWS EC2 Intel-based
instance can be moved to an EC2 AMD-based instance using the web application,
AWS Management Console, which comprises of, and refers to, a broad collection of
service consoles for managing Amazon Web Services.

The Process

Verify the current instance type.
Cég Cégn C6i c5 C5a C5n c4

C5 instances are optimized for compute-intensive workloads and deliver cost-effective high performance at a low price per

compute ratio.

Features:

* (5 instances offer a choice of processors based on the size of the instance.

* New C5 and C5d 12xlarge, 24xlarge, and metal instance sizes feature custom 2nd generation Intel Xeon Scalable Processors
(Cascade Lake) with a sustained all core Turbo frequency of 3.6GHz and single core turbo frequency of up to 3.9GHz.

s Other C5 instance sizes will launch on the 2nd generation Intel Xeon Scalable Processors (Cascade Lake) or 1st generation Intel
Xeon Platinum 8000 series (Skylake-SP) processor with a sustained all core Turbo frequency of up to 3.4GHz, and single core
turbo freguency of up to 3.5 GHz.

* New larger 24xlarge instance size offering 96 vCPUs, 192 GiB of memory, and optional 3.6TB local NVMe-based SSDs
* Requires HVM AMIs that include drivers for ENA and NVMe

* With C5d instances, local NVMe-based 55Ds are physically connected to the host server and provide block-level storage that is
coupled to the lifetime of the C5 instance

» Elastic Network Adapter (ENA) provides C5 instances with up to 25 Gbps of network bandwidth and up to 19 Gbps of
dedicated bandwidth to Amazon EBS.

* Powered by the AWS Nitro System, a combination of dedicated hardware and lightweight hypervisor

Model vCPU Memory (GiB) Instance Storage (GiB) Network Bandwidth (Gbps)*** EBS Bandwidth (Mbps)
c5.large 2 4 EBS-Only Upto 10 Up ta 4,750
c5.xlarge 4 a8 EBS-Only Upto 10 Up to 4,750
c5.2xlarge 8 16 EBS-Only Upto 10 Up to 4,750

Stackgenie | Moving from Intel to AMD-powered instances

https://console.aws.amazon.com/

Find a similar instance type in AMD EPYC™.

L

3 €5n c4

™

C6g Cegn Cei 5
C5a instances offer leading x86 price-performance for a broad set of compute-intensive workloads.

Features:

* 2nd generation AMD EPYC 7002 series processors running at frequencies up to 3.3 GHz |

Elastic Metwork Adapter (ENA) provides C5a instances with up to 20 Gbps of network bandwidth and up to 9.5 Gbps of
dedicated bandwidth to Amazon EBS

Powered by the AWS Nitro System, a combination of dedicated hardware and lightweight hypervisor

+ With C5ad instances, local NVMe-based 55Ds are physically connected to the host server and provide block-level storage that

is coupled to the lifetime of the C5a instance

Memory

Medel vCPU (GiB) Instance Storage (GIB) Network Bandwidth (Gbps)*** EBS Bandwidth (Mbps)
i
c5a.large Z 4 EBS-Only Up to 10 Upto 3,170
c5a.xlarge 4 8 EBS-Only Up to 10 Upto 3,170 I
c5a.2xlarge 8 16 EBS-Only Up to 10 Up to 3,170
c5a.dxlarge 16 32 EBS-Only Up to 10 Up to 3,170

Instances (1/7) infe | c_| r Connect !! Instance state ., || Actions ¥ _| Launch instances n
Stop instance 1 ®

a

search; i-085662c509c50f175 X [Clear filters
z Reboot nstance

o Mame v Instance |D A Instance state v Instance type T Ty Alarm status Availability Zone w Publ
P
= test i-DB5662c509c5df175 @ Running @&, c5large Terminate instance Moalarms 4 eu-west-Jc el
il . W — > o CRLEEEE .

2 Successfully stapped -085662c509¢5df1 75

Instances (1/1) fo O | connect | Instance state v !! Actions ¥ |n

Q 1 e
| search:i-osse62cs09c5dt175 X | | Clear filters
Mama v Instance |D & Instarice state v Instance type v Status check Alarm status Availability Zene v Publ
test -085662c509c5df175 © Stopped @G c5.lalge_ a - Mo alarms == eu-wesi-? -

9 | stackgenie.io

https://aws.amazon.com/ec2/instance-types/

Change the instance type.

Madify instance placement
Madify Capacity Reservation settings
[Edit user data

Manage tags

EC2 » Instances » [-0B5662c509c5df175 » Change instance type

Change instance type info

You can change the instance type only if the current instance type and the instance type that you want are compatible,

Instance ID

3 i-0B5662c509c5df175 (test)
Current instance type

c5S.large

Instance type

c5.large ry |

c5a_24xlarge
c5a.2xlarge g

cSa.dxlarge |

c5a.8xlarge Cancel m
c53.largg

chaxlarge

c5d.12xlarge

c5d.18xlarge

c5d.24xlarge =

Instances (1/1} wro (&) | Cannect | Instance state w | Actions & I
Q FAlte Lonnect 1 % [
View details
|ﬂard‘:h0856&2c509c50ﬂ?5 x| | Clear filters
Manage instance state
= Name v Instance 1D A instancestate W| i o duto Scaling Group ¥ Instance settings » Fom v Publ
test -0R5662c509c5df175 © Stapped @8 Change instance type Networking b -
'4% Change Nitro Enclaves Security > :
Change termination protection Image and templates L3
Change shutdown behavior Monitor and troubleshoot L3
Change cred: ficstinn

Start the instance.

Instances (1/7) infa [&) Connect | Instance state & || Actions w |-

= test i-0B5662¢509c5df175 © Stopped @& chalarge Teii it gstaics Noalarms 4 eu-west-2c

Q Filter instances Stop instance < 1>
i Start instance
| search: |-0B5662C509(50175 X | | Clear filters
[] MName v Instance 1D Instance state W Instance type Hils » rtaics Alarm status Availability Zone w Py

"

Stackgenie | Moving from Intel to AMD-powered instances

@

Confirm the instance has started successfully.

@ Successfully started I-085662c509c5df175

Instances (1) info | & t Instance state w Actions W n
Q 1 @
search: |-0B5E62c509¢5df175 X Clear filters

MName v Instance 10 Instance state v Instance type ¥ Status check Alarm status Availability Zone ¥ Pu
test i-0B5662c509c5If175 Running @& c5alarge 2/2checks passed Noalarms == EU-west-2¢ BC

Update from AWS CLI

The AWS Command Line Interface (CLI) is a unified tool to manage your
AWS services. With just one tool to download and configure, you can control

multiple AWS services from the command line and automate them through
scripts.

Please follow the link to configure AWS CLI credentials to execute following
commands.

The Process

01

Verify the current instance type.

$ aws ec2 describe-instances | jq -r '.Reservations[].Instances[] |
select(.Tags[].Key=="Name" and .Tags[].Value=="test") | .InstanceType'

c5.large

11| stackgenie.io

https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-quickstart.html

Log in to the instance and fetch the CPU information.

ssh -1 "test-user.pem" ec2-user@ec2-18-168-62-86.eu-
est-2.compute.amazonaws.com

$ cat /proc/cpuinfo | more

Find a similar instance type in AMD EPYC™,

Cbg Cégn C6i s C5a C5n c4

C5a instances offer leading x86 price-performance for a broad set of compute-intensive workloads.

Features:

* 2nd generation AMD EPYC 7002 series processors running at frequencies up to 3.3 GHz

* Elastic Metwork Adapter (ENA) provides C5a instances with up to 20 Gbps of network bandwidth and up to 9.5 Ghps of
dedicated bandwidth to Amazon EBS

e Powered by the AWS Nitro System, a combination of dedicated hardware and lightweight hypervisor

= \With C5ad instances, local NVMe-based 55Ds are physically connected to the host server and provide block-level storage that

is coupled to the lifetime of the C5a instance

Memory

Model vCPU (GiB) Instance Storage (GiB) Network Bandwidth (Gbps)*** EBS Bandwidth (Mbps)
i

c5a.large Z 4 EBS-Only Upto 10 Upto 3,170

c5a.xlarge 4 8 EBS-Only Up to 10 Upto 3,170

c5a.2xlarge 8 16 EBS-Only Up to 10 Up to 3,170

c5a.dxlarge EBS-Only Up to 10 Up to 3,170

https://aws.amazon.com/ec2/instance-types/

©

Stop running the instance.

$ aws ec2 describe-instances | jq -r '.Reservations[].Instances[] |
select(.Tags[].Key=="Name" and .Tags[].Value=="test") | .Instanceld'

i-061dd9d896587fea9
$ aws ec2 stop-instances --instance-ids i-061dd9d896587fea%

{

"StoppingInstances”: [
{
"Instanceld": "i-061dd9d896587fea%",
"CurrentState": {
"Code": 64,
“Name": "stopping"
}s
"PreviousState": {
“Code": 16,
“Name": "running"

Confirm the instance has stopped.

$ aws ec2 describe-instances | jq -r '.Reservations[].Instances[] |
select(.Tags[].Key=="Name" and .Tags[].Value=="test") | .State'

{
"Code": 80,

"Name": "stopped"

}

13 | stackgenie.io

06

Log in to the instance and fetch the CPU information.

$ aws ec2 modify-instance-attribute --instance-id 1-061dd9d896587fea9 --
instance-type "{\"Value\": \"c5a.large\"}"

$ aws ec2 describe-instances | jg -r '.Reservations[].Instances[] |
select(.Tags[].Key=="Name" and .Tags[].Value=="Test") | .InstanceType'

c5a.large

@

Start the new instance type.

$ aws ec2 start-instances --instance-ids i1-061dd9d896587fea9

{

"StartingInstances”: [
{
"CurrentState”: {
"Code": 0,
"Name": "pending"

1

"Instanceld"”: "1-061dd9d896587fea9",
"PreviousState”: {

"Code": 80,

"Name": "stopped"

Stackgenie | Moving from Intel to AMD-powered instances

e,

Confirm the instance has started successfully.
$ aws ec2 describe-instances | jq -r

' .Reservations[].Instances[] | select(.Tags[].Key=="Name"
and .Tags[].Value=="test") | .State'

{
"Code": 16,

"Name": "running"

}

07

Log in to the instance and fetch the CPU information.

$ aws ec2 describe-instances | jq -r
' .Reservations[].Instances[] | select(.Tags[].Key=="Name"
and .Tags[].Value=="test") | .State'

{
"Code": 16,

"Name": "running"

}

$ ssh -i "test-user.pem" ec2-user@ec2-18-168-62-86.eu-
west-2.compute.amazonaws.com

: 49
: AMD EPYC 7R32

15 | stackgenie.io

MOVEMENT OF AN EC2 INSTANCE
APPLICATION

HashiCorp Vault

This section demonstrates how an application running on several EC2 instances can be
moved using either AWS CloudFormation or Terraform. The exercise uses the HashiCorp
Vault application, an open-source tool for securely storing secrets and sensitive data in

dynamic cloud environments.

The infrastructure is currently deployed in AWS EC2 instance; the underlying nodes are
using AWS Intel instances. The transition process will update this infrastructure from Intel

EC2 instances to AMD EPYC™ EC2 instances.

Tools

HashiCorp Vault | Stores and
secures access for sensitive
data using a Ul, CLI or HTTP
API.

HashiCorp Terraform |
Open-source laC software
that provides a consistent
CLI workflow to manage
cloud services.

AWS EC2 | Provides a wide
selection of instance types

| optimised to fit different use
cases.

AWS DynamoDB | Fully
managed, serverless, key-
value NoSQL database
for high-performance
applications.

The Vault Servers, hosted on EC2 instances,
are created using an Auto Scaling Group
(ASG). So, if any instance goes down,

it’s automatically replaced. It also uses
DynamoDB in the on-demand mode which
means that no management is required for
server capacity, storage, or throughput.

When Vault is in High Availability Mode,

it enables multiple Vault Servers in the
deployment. At any given time, one Vault
Server will be “active” and serving the
incoming requests/writing/reading the
encrypted data. Other Vault Servers are
put in “stand-by” mode in case the “active”
server fails.

Stackgenie | Moving from Intel to AMD-powered instances

Application Architecture in AWS

Load Balancer DNS

Vault Domain Name

Application Load Balancer

T
>p¢ [R
i o P

Aute scaling group -

Vaull Server
Standby
Zone B

Vault Users

Deployment with Terraform

Terraform is an open-source, infrastructure-as-code (laC) software tool that allows you
to build, change and version infrastructure, both safely and efficiently. It can be used
to manage existing service providers as well as custom in-house solutions, for both low-
level (eg compute instances, storage, networking) and high-level components (eg DNS

entries, SaaS features).

This repository contains a set of Terraform files for deploying a Vault cluster on AWS.
HashiCorp Vault helps to store the infrastructural secrets and credentials in a highly

available setup.

17 | stackgenie.io

Deployment Architecture

(’ (fas0n)
e | smesssss e se e e
= :
;
:
.
i

J_— § WV Vauit

l P
oy W

Users Terrafarm

Clone the application GitHub repository, and follow the Readme.md file to
configure and deploy the HashiCorp Vault in AWS with the help of Terraform.

This project requires that you have '

Terraform 0.14+ installed. Both Terraform will create a base
deployment and management should be infrastructure containing:
done through Terraform. « ECZ instances

 DynamoDB
The deployment process is done using S3 bucket
a Terraform template, by cloning the « KMS Key

repository into CLI and modifying the
required parameters, then executing a
command, the entire infrastructure will

« an Application Load Balancer
» an Autoscaling Group

be provisioned. Users can access the * Route53 subdomain entry
vault dashboard via Route53 or can use « VPC and its components
load balancer DNS.

Terraform also executes a user-data which helps to initialise the vault and allows it to
auto-unseal with the help of a KMS key. The root token and key shards will be uploaded
to an S3-bucket that has to be created by Terraform.

The DynamoDB storage will provide high availability and is used to persist Vault's data in
the DynamoDB table.

Stackgenie | Moving from Intel to AMD-powered instances

https://github.com/stackgenie/stackgenie-devops-amd01
https://github.com/stackgenie/stackgenie-devops-amd01#readme

The Process

Moving from t3.medium instance infrastructure to an AMD-based t3a.medium

instance.

AWS EC2 Instance View: Instances are currently running on Intel t3.medium.

Instances (2} info ﬁ Instancestate v || &
Q
search: vault-deployment-instance X Clear filters
Name v Instance ID Instance state i Instance type ¢ Status check
vault-deployment-instance i-Oeabbdcab33f866a3 @ Running @@ t3.medium @ 2/2 checks passed
vault-deployment-instance i-0Obf33bSe2afda’iand ® Running @Q t3.medium @) 2/2 checks passed

02,

Clone the repository.
$ git clone https://github.com/stackgenie/stackgenie-devops-amd@l.git &&

cd stackgenie-devops-amdel

o2,

Go to the Terraform variable file, update the file (variables.tf) with the
“Instance type” to AMD EPYC™ (t3a.medium).

variable "vault_instance_type" {
description = "The EC2 instance size of the vault."
type = string

default = "t3a.medium"

19 | stackgenie.io

4

Once the file is updated, execute the below commands.

$ terraform init

$ terraform plan

Terraform Plan Output:

aws_launch_template.vault instance will be updated in-plact

resource "aws launch template” "vault instance” {
id = "1t-08add96!

instance_type
latest_version

$ terraform apply

&

AWS Instance View: Instance type has been modified from Intel powered
t3.medium to AMD EPYC™ powered t3a.medium.

Instances (4) info C Instance state W | Actions ¥

Q

search: vault-deployment-instance X Clear filters
Name Instance ID Instance state Instance type ¥ Status check Alarm status
vault-deployment-instance i-Oeabbdcab33f866a3 @ Terminated@,@, t3. medium - No alarms
vault-deployment-instance i-09c479e81801654¢9 @ Running &Q t3a.medium & 2/2 checks passec No alarms
vault-deployment-instance i-0b833b5e2afdaza0d @ Terminated@®Q, tZ.medium - Na alarms
vault-deployment-instance i-0109b2e7h4a 160470 ® Running & t3a.medium @ 2/2 checks passed Mo alarms

@

Vault Browser View: Verify the application is working as expected.

Vault = W

Lpsy//vault.stackgenie.io/

Policies Tools

Secrets Engines

cubbyhole/
abbyhe 1 2REBLT
low/

Stackgenie | Moving from Intel to AMD-powered instances

@

The result is a successful transition of EC2 instances from Intel-based
processors to AMD variants using Terraform.

Deployment with CloudFormation, Packer and

Ansible

CloudFormation is an AWS managed
service that allows you to manage
the infrastructure in AWS using
templates. As the name suggests,

it is an Infrastructure as code (laC)
tool. CloudFormation is used for
automating the deployment and
configuration of the majority of
services in AWS.

Packer is an open source tool from
HashiCorp that can be used to create
golden images from a single source of
configuration.

Ansible is a highly versatile

open source tool. It can handle
configuration management,
application deployment, cloud
provisioning, ad-hoc task execution,
network automation and multi-node
orchestration.

\/
0

Tools

HashiCorp Vault | Stores and
secures access for sensitive
data using a Ul, CLI or HTTP
API.

HashiCorp Packer | Creates
identical machine images

for multiple platforms from a
single source configuration.

AWS CloudFormation |
Treats infrastructure as code
to model, provision and
manage AWS and third-party
resources.

AWS EC2 | Provides a wide
selection of instance types
optimised to fit different use
cases.

AWS DynamoDB | Fully
managed, serverless,
key-value NoSQL database
for high-performance
applications.

CloudFormation Templates

The CloudFormation templates (vault_cfn.yaml) available in the GitHub
repository will deploy the application in AWS. This CloudFormation template
deploys a VPC with both public and private subnet across two Availability
Zones. It also provisions an instance backed by an autoscaling group which
is using a custom Amazon Machine Image (AMI) created with Packer. Finally,
the CloudFormation template will create an application load balancer, auto
scaling group, DynamoDB table, SSM Parameter Store, KMS key and Route53

subdomain entry.

21| stackgenie.io

Deployment Architecture

GitHub L____D:D
011

e Clone
ooploy

>

2

7as G T A

Users Formation

Packer AN

Input < Build / Publish
7

CLI

Clone the application GitHub repository, and follow the Readme.md file to
deploy the application. The packer builder command will provision an AMI with
the help of the Ansible provisioner.

The user-data in the Launch
Template will initialise the Vault
cluster and upload the root keys and
recovery keys in the SSM parameter
store. An encryption key from AWS
Key Management Services (KMS) will
help to auto-unseal Vault.

Use a custom build AMI, as this
application is deployed into an EC2
instance, by using HCP Packer with
Ansible provisioner. The deployment
process can start once the custom

AMI is ready. This is done using a
CloudFormation template, by cloning
the repository into CLI and modifying
the required parameters, then executing
a command, the entire infrastructure will
be provisioned. Users can access the
vault dashboard via Route53 or can use
load balancer DNS.

Whilst, the DynamoDB storage
backend supports high availability
and is used to persist Vault’s data in
the DynamoDB table.

Stackgenie | Moving from Intel to AMD-powered instances

https://github.com/stackgenie/stackgenie-devops-amd02
https://github.com/stackgenie/stackgenie-devops-amd02#readme

The Process

In this example, the application is running on an Intel
To move the application to an AMD EPYC™ powered
“Instance Type” parameter on the CloudFormation
application and change the EC2 instance type.

0

AWS EC2 Instance View: Current infrastructure is running on Intel c5.large instance.

Instances (1) info @ Connect | Instance state ¥ || Actions ¥ |l
Q, Filker instances |

search: i-0514bf7e764e952d7 X | | Clear filters

[] Name v Instance ID instance state - instance type ¥ Status check Alarm status

dev-wault-stackgenie-ia i-0514bf e 784e552d7 @ Running @8 cSlarge @ 2/2 chocks passec. No atarms 4

@

AWS CFN Stack View: To update the current CloudFormation Stack that is
deployed, click on ‘update’.

CloudFormadion > Stacks > devamult-stackganie-in

B Stacks (2) (o] dev-vault-stackgenie-io [oetete | [update || Stockactioms w | [creae stack v
O Etar by sick i Stackinfo | Events | Resources | Owtputs | Parameters | Template | Change sets
active v | D Viewnesied .

Overview ’?|

Stack ID Description

armawl i west- 253326083 3584 stack dev-vault- EC2 HashiCorp Vault Deployment Stack, a stackgenie.io template
stackgenie-in/e39daBicd-3975-1 Tec-hbah-02d013916e52 [2

dev-vault-stackgenie-io
I021-10-30 170623 LTC0530
(2) CREATE_COMPLETE

Status Status razson
(&) CREATE_COMPLETE

02

AWS CFN Stack Actions: Click on ‘use current template’.

CloudFormation > Stacks > dev-vault-stackgenie-ip » Update stack

Step 1
o g Update stack
Step 2 Prerequisite - Prepare template

Specity stack detalls

Prepare template
Step 3 Every stack it based on 3 tampiate, & temalate is 3 1500 or YAML file that contains comfiguration infarmation about the AWS resources you want to inckide in the stack.
Configure stack aptions

© Use carrent template | Replage current template Edit template in designer

Stap 4
Resdew

e N

€

AWS CFN Stack actions: Change the instance type to AMD EPYC™ powered
cba.large. Run the Stack by clicking ‘next’, then “finish’.

InstanceType
{Raquired) The instance type for the EC2 Instanca

t5.large

@

AWS EC2 Instance View: The Instance Type has been modified from
Intel-powered c5.large to AMD EPYC™ powered c5a.large.

dev-vault-stackgenie-io i-0514bf7e 784295247 @ Terminated@ @, ca.large - Moalarms <

dev-vault-stackgenie-io i-061af1b80bsa3ebd] @ Running @Q chalarge © 2/2 checks passec Noalarms 4

06,

Vault Browser View: Verify the application is working as expected.

Secrets Engines

Envie e el +

b

@

The result is a successful transition of EC2 instances from Intel-based
processors to AMD variants using CloudFormation.

Stackgenie | Moving from Intel to AMD-powered instances

MOVEMENT OF A MICROSERVICE
WEB APPLICATION WITH DATABASES

e-Commerce Application

In this example, to aid the demonstrations and testing of microservices and cloud-native
technologies, the application for the purpose of migration is an e-commerce application.
As an online shop that sells products, it is a multi-tiered application that has both a web
front-end, that’s user-facing, and a database back-end. Please refer to the online shop
application GitHub repository.

The application is built using Spring Boot, Go kit and Node.js and is packaged in Docker
containers. You can read more about the application design.

y / 4

L
= (

Ny

=

Tools

HashiCorp Terraform |
Open-source laC software
that provides a consistent
CLI workflow to manage
cloud services.

Amazon EKS | Open-source
system for automating
deployment, scaling

and management of
containerised applications.

Argo CD | A declarative,
GitOps continuous delivery
tool for Kubernetes.

5
Tlubemetes T
A S
=X

NGINX ingress controller |
Ingress exposes HTT and
HTTPS routes from outside
the cluster to services with the
cluster. An ingress controller
for Kubernetes using NGINX
as a reverse proxy and load
balancer.

ExternalDNS | Synchronises
exposed Kubernetes
Services and Ingresses with
DNS providers, and makes
Kubernetes resources
discoverable via public DNS
servers.

25 | stackgenie.io

https://github.com/microservices-demo/microservices-demo
https://spring.io/projects/spring-boot
http://gokit.io/
https://nodejs.org/en/
https://github.com/microservices-demo/microservices-demo/blob/master/internal-docs/design.md

e-Commerce Application Design

@ The architecture of the demo

User
microservices application

Nade! was intentionally designed to
provide as many microservices
, as possible, as well as being

| polyglot to exercise a number
Java / NET Core | of different technologies. The

Go Go E Go ' lava
microservices are roughly
Catalogue . . .
- &t b 22 defined by the function in an
= Mongo — Mango — MySaL = Mongo

e-Commerce site. All services

o bt communicate using REST over
s L - HTTP. This was chosen due to
the simplicity of development
and testing.

The Application containers are deployed on EKS Cluster with Cl/CD tool Argo CD so the
application deployment and lifecycle management should be automated, auditable,
and easy to understand. It also uses some supporting tools NGINX ingress controller,

and external DNS provisioner. All these microservices are scheduled on Amazon EKS
managed node groups to automate the provisioning and lifecycle management of nodes
(Amazon EC2 instances) for Amazon EKS Kubernetes clusters and all managed nodes

are provisioned as part of an Amazon EC2 Auto Scaling group that’s managed for you by
Amazon EKS.

dws
e

Argo CD Ingress Controller Application

Stackgenie | Moving from Intel to AMD-powered instances

Application Structure in EKS

$ kubectl get all -n sock-shop

NAME READY STATUS RESTARTS AGE

pod/carts-b4d4ffb5c-ndkq? 1/1 Running 17m

pod/carts-bdd4fFb5c-nfgll 1/1 Running 61m

pod/carts-db-6c6c68b747-F7g61 1/1 Running 61m

pod/carts-db-6c6c68b747-Fs jwz 1/1 Running) 17m

pod/catalogue-759cc6bB6-9g694 1/1 Running 61m . . .
pod/catalogue-759cc6b86-rtxrg 1/1 Running @ 17m The 0pp||CClt|on IS CU rrently

pod/catalogue-db-96f6febdc-567gn 1/1 Running 61m . . o
pod/catalogue-db-96f6f6bdc-72p13 1/1 Running 17m deployed in EKS, with the underlying

pod/front-end-5c89dbof57-n7sow 1/1 Running 61m EC2 instcnces using AWS Intel
pod/front-end-5cB9db9f57 -nwnb9 1/1 Running 17m .

pod/orders-7664c64d75-2vkfk 1/1 Running 17m CS.IGrge |nSthceS.
pod/orders-7664c64d75-kmtqgd 1/1 Running 61m

pod/orders-db-659945975F-7tdén 1/1 Running 61lm

pod/orders-db-659949975f-tfzrp 1/1 Running 17m The transition process will updqte
pod/payment-7bcdbfa5¢%-Smkvd 1/1 Running 17m . .

pod/payment - 7bcdbfa5¢3-q69xd 1/1 Running & 61m this infrastructure from c5.la rge
pod/queue-master-5feded4796-87228 1/1 Running 17m A 8
pod/queue-master-5fed6d4796-xgjde 1/1 Running 61im Instances to C50°|Orge Instances
pod/rabbitmq-5bcbb547d7-c6igt 2/2 Running 61n that are based on AMD EPYC™,
pod/rabbitmg-5bcbb547d7-fgspr 2/2 Running 17m

pod/session-db-7cf97FBdaf-dSxpw 1/1 Running 61m

pod/session-db-7cf97f8daf-gbikq 1/1 Running 17m

pod/shipping-7f7999ffb7-vjsfl 1/1 Running : &1lm

pod/shipping-7f7999ffb7-x4hlh 1/1 Running 17m

pod/user-68df64db9c-gkmvi 1/1 Running 61m

pod/user-68df64db9c-xclps 1/1 Running 17m

pod/user-db-edf7444fc-pmobs 171 Running &1lm

pod/user-db-6df7444fc-r2qke 1/1 Running] 17m

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
service/carts ClusterIP 172,28.192.246 <none> Ba/TCP
service/carts-db ClusterIP 172.20.101.125 <none> 27817/TCP
service/catalogue ClusterIP 172.208.122.18 <none> 88/TCP
service/catalogue-db ClusterIP 172.28.183.38 <none> 3386/TCP
service/front-end NodePort 172.20.91.62 <none> 80:380801/TCP
service/orders ClusterIP 172.20.248.18B6 <none> Be/TCP
servicef/orders-db ClusterIP 172.28.248.59 <none> 27017/TCP
service/payment ClusterIP 172.208.186.179 <none> 88/TCP
service/queve-master ClusterIP 172.20,173.128 <none> 8e/TCP
service/rabbitmg ClusterIP 172.208,148.122 <none> 5672/TCP, 9898/ TCP
service/session-db ClusterIP 172.20.102.127 <none> 6379/TCP
service/shipping ClusterIP 172.20.199.86 <none> 80/TCP
service/user ClusterIP 172.20.47.126 <none» 8@/TCP
service/user-db ClusterIP 172.20.8.18 <none> 27817/TCP

NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/carts 2/2] 61m
deployment.apps/carts-db 2/2 61m
deployment,apps/catalogue 2/2 61m
deployment.apps/catalogue-db 2/2 61m
deployment. apps/front-end 2/2 y 61m
deployment.apps/orders 2/2 y &1m
deployment.apps/orders-db 2/2 2 (0]
deployment. apps/payment 2/2 61m
deployment.apps/queue-master 2/2 61m
deployment.apps/rabbitmg 2/2] 61m
deployment.apps/session-db 2/2 61m
deployment, apps/shipping 2/2 61m
deployment.apps/user 2/2 61m
deployment. apps/user-db 2/2) 61m

NAME DESIRED CURRENT READY
replicaset.apps/carts-bad4ffb5c
replicaset.apps/carts-db-6c6c68b747
replicaset.apps/catalogue-759ccEb86
replicaset.apps/catalogue-db-96f6f6bdc
replicaset.apps/front-end-5c89db9f57
replicaset,apps/orders-7664c64d75
replicaset.apps/orders-db-659949975F
replicaset. apps/payment-7bcdbfa5c9
replicaset. apps/queue-master-5f6d6d4a796
replicaset.apps/rabbitmg-5bcbb547d7
replicaset.apps/session-db-7cf97f8daf
replicaset,apps/shipping-7f7999ffb7
replicaset.apps/user-68df64db9c
replicaset.apps/user-db-6df7444fc

27 | stackgenie.io

Deployment with Terraform

In this example, Terraform is used only for deploying the AWS infrastructure.
The AWS infrastructure includes EKS cluster, VPCs and its components.

Also, Argo CD is already deployed on the cluster using an
Argo manifest. The microservices application is deployed
with Argo CD. Optional services like “Nginx ingress
controller along with ExternalDNS” will also be deployed
on the cluster.

The movement of these applications on EKS node group
from AWS Intel c5.large instance to AWS AMD EPYC™
powered c5a.large can be achieved by changing the
instance type on the Terraform variable file.

Deployment Architecture

| EKS
1
1
1
1
SOCKSHOF 1
o i
Application :
1
GitHub i
:
1
L] - I
@

= :
6 1
[]
Argo CD ;

/N

&

Users Terraform

Input N > Deploy
i

Clone the application repository and follow the readme to deploy the application in
EKS. This application is deployed using tools such as HashiCorp Terraform, AWS EKS
(Elastic Kubernetes Services), and Argo CD.

Stackgenie | Moving from Intel to AMD-powered instances

https://github.com/stackgenie/stackgenie-devops-amd03
https://github.com/stackgenie/stackgenie-devops-amd03#readme

This project requires Terraform 0.14+ and Argo CD CL. The deployment process
uses a Terraform template, by cloning the repository into CLI and modifying the
required parameters, then executing a command, the entire infrastructure will be
provisioned. Once the infrastructure is ready, the application is deployed using
Argo CD CLI. Users can access the application via Route53 or can port-forward the

application to localhost.

The Process

Moving from c5.large instance to an AMD-based c5a.large instance.

L0,

AWS EC2 Instance View: EC2 instances (EKS nodes) are running on Intel c5.large.

EKS Clusters dev-sotkshop-bdta

dEV-SOC ksho p-b41 d @ Active] | Delete cluster
Owerview Waorkloads Configuration
Nodes (1) inf
Q 1
Created Status v

Node name Instance type ¥ MNode Group

dev-sackshop-ba Ta-workerZ0211 110093434684 30000000 an hour ago (Z) Ready

ip-10-50-3-99 eu-west-2.caompute.internal c5.large

@

Clone the repository.

$ git clone https://github.com/stackgenie/stackgenie-devops-amde3.git &&

cd stackgenie-devops-amde3

o2

For changing the instance type from Intel-powered c5.large to
AMD EPYC™ powered c5a.large, update the “node_instance_type” in
Terraform variable file (variables.tf).

variable "node_instance_type" {

Default = "c5a.large"

29 | stackgenie.io

€

Applying Terraform changes will update the instance type to c5a.large.

$ terraform init
$ terraform plan

module.eks.module.node_groups.aws_eks node_group.workers["worker"] must

be replaced
+/- resource "aws_eks_node_group"” "workers" {
~ instance_types = [# forces replacement

- "c5.large",
+ "c5a.large",

$ terraform apply

AWS Console Cluster View: The EC2 instances are modified from Intel
cb.large to AMD EPYC™ powered c5a.large.

Secrets Engines

Enaie rew engine +

L7

AWS Console instance view: The EC2 instances after the transition.

Instances (2) Info \L Connect | instance state ¥ | _.‘
a :
| search:i-03¢0agbbb19ba23bd X | | search:i-054f979f5ef6e7ed6 X | | Clear filters
Name v Instance ID Instance state v Instance type ¥ Status check
- i-03e0abbbb19baz3bd @ Terminated@ &, c5.large -
i-054f979f5BfbeTedb ® Running @& t5a.large (@ 2/2 checks passed

Stackgenie | Moving from Intel to AMD-powered instances

&)

Browser result: Application is working as expected after the instance type is
changed from c5.large to cba.large.

T WeaveSods *® ;+

(] 2] nmips/fdev-sockshop stackgenie o o 3

OFFERDFTHE DAY | Buy 1000 socks, get a shoe for free!

(CATALOGUE ~

BEST PRICES

WE LOVE SOCKS!

100% SATISFACTION
GUARANTEED
Fun fact Socks were invented by waally

Wie price check cur socks with trained monkeys

Deployment with CloudFormation

As in the previous example, Argo CD
is deployed on the cluster using an

Argo manifest. The microservices
application is deployed with Argo CD.
Optional services like “Nginx ingress
controller along with ExternalDNS”
will also be deployed on the cluster.

For migrating the application from

the AWS Intel c5.large instance to
AWS AMD EPYC™ powered c5a.large,
update the CloudFormation stack with
a new instance type (c5a.large).

Argo CD

Argo CD automates the deployment
of the desired application states in
the specified target environments.

Application deployments can track
updates to branches, tags, or pinned
to a specific version of manifests at a
Git commit.

31| stackgenie.io

Tools

AWS CloudFormation | ' NGINX ingress controller |

Treats infrastructure as code Ingress exposes HTT and

to model, provision and HTTPS routes from outside

manage AWS and third-party the cluster to services with the

resources. cluster. An ingress controller
for Kubernetes using NGINX

Amazon EKS | Open-source as d reverse proxy and load

system for automating balancer.

K‘ deployment, scaling

and management of

. S ExternalDNS | Synchronises
containerised applications.

exposed Kubernetes
Services and Ingresses with
DNS providers, and makes
Kubernetes resources
discoverable via public DNS
servers.

Argo CD | A declarative,
GitOps continuous delivery
tool for Kubernetes.

Deployment Architecture

7 @

GitHub

|

& =

N

Input Build
* -

CLI

Clone the application repository and follow the readme to deploy the
infrastructure and application. Deploying the Cloud Formation Template will
create the AWS infrastructure for the application. The AWS Infrastructure contains
a VPC, EKS cluster, and EKS NodeGroup.

Stackgenie | Moving from Intel to AMD-powered instances

https://github.com/stackgenie/stackgenie-devops-amd04
https://github.com/stackgenie/stackgenie-devops-amd04#readme

The application is deployed into EKS, here we are using CloudFormation
for infrastructure deployment and Argo CD for the application
deployment. First, clone the repository and modify the required

parameters, then execute the command, the entire infrastructure will be
provisioned. Once we have the infrastructure, next, deploy an application
using Argo CD. Users can access the application via Route53 or can
port-forward the application to localhost.

The Process

Moving from c5.large instance infrastructure to an AMD-based c5a.large instance.

0

AWS CFN stack console view: The Intel EC2 instance is c5.large as highlighted below.

CloudFormation Stacks dev-sockshop-example-io
[Stacks (1) & Stack info Events Resources Outputs Parameters Template Change sets
Q
pitie - | |) Visainacted Parameters (9)

1

dev-sockshop-example-io o =
2021:11-08 13:34:19 UTC+0550
(©) UPDATE_COMPLETE Key A Value
ACMCertificate AR
N
ArgoFQDN dev-argo.stackgenie io
CapacityType ON_DEMAND
ClassB 88
DhSHostedZonelD
Instances (2) infe | C | Instance state ¥ || ¢
Q
search: i-06049bab874a5bf59 X search: i-000f436274ced43a30 X Clear filters
Name v Instance ID Instance state v Instance type ¥ Status check
- i-06049bab874a5bf59 @ Running @& c5.large @ 2/2 checks passec
- i-000f436274ce43330 & Running @& &, c5.large (&) 2/2 checks passed

33 | stackgenie.io

@

AWS console actions: Change the instance type to AMD EPYC™ powered

cba.large by updating the current template:

CloudFormation Stacks dev-sockshop-example-io

o1 Stackis (1) ral dev-sockshop-example-io Delete Update

Q Stack info Events Resources Outputs Parameters Template

e @) View nested

1
Parameters (9)

dev-sackshop-exampla-io o
2021-11-08 13:3418 UTC+0S30 a

(2 UPDATE_COMPLETE

02

Stack actions v | Cre

AWS console actions: Choose ‘use current template’ and change the instance

type to AMD EPYC™ powered c5a.large.

Cluster EC2 Node Parameters

InstanceTypes
[Required] The ListiCommaDelimitedList) of EC2 instance types, that you want to run on the clustar

coalarge

©

AWS console view: The EC2 instances are modified from Intel c5.large to AMD

EPYC™ powered c5a.large.

CloudFormation Stacks dev-sockshop-example-lo

dev-sockshop-example-io

[Stacks (1) | ¢ |
Q — Stack infa Events Resources Outputs Parameters Template
T D view nested
1 Parameters (9)
dev-sockshop-example-io
p pl o Q

2021-11-08 T3:54:79 UTC+0530
@ UPDATE_COMPLETE

Key a Value
ACMCertificateARN ArmAWsacm
ArgoFQDN dev-argo.stackgenie.io
CapacityType ON_DEMAND

ClassB 88

DNSHostedZanelD
DesiredCount 2

InstanceTypes csa.large

Stackgenie | Moving from Intel to AMD-powered instances

Stack

AWS instance view: The EC2 instances after the transition.
Instances (4) info | C | (Instance state ¥ l | A
Q
search: i-06040bab874a5hf59 X search: i-000f436274ced3a30 X search: i-Ofbf2f1d5fd1ee80d X search: i-0295d29a3d69cd 385

Clear filters

Name v Instance ID Instance state v Instance type ¢ Status check

- i-06049bab874a5bf59 © Terminated@ @, c5.large -
i-0295d29a3d69cd385 (@ Running @& c5a.large (@) 2/2 checks passec

- i-000f436274ceq3a30 (® Terminated@ &, cS.large -

- i-0fbf2f1d5fd1ee80d @) Running ®E c5alarge @) 2/2 checks passed

Browser result: The application is working as expected after moving the
instance type from c5.large to cba.large.

T WeaveSocks x

(5] (] nipsydev-sockshap stackgenielo e

Login | Register

w weave\’g{?g S_é CATALOGUE ~ = 0 itemns in cart

WE LCVE SOCKS! BEST PRICES

Fun fact: Socks were invented by waolly We price check our socks with trained monkeys

35 | stackgenie.io

stackgenie

CONCLUSION

Whilst Intel processors have been the default choice
for running instances on Amazon EC2 for well over

a decade, the launch of AMD EPYC™ processors in
2018 provided Amazon customers with alternative
options for running workloads.

Having more availability and choice means AWS
users can optimise for performance and cost, as well
as right-sizing their workloads by choosing from a
wide variety of Intel and AMD-based options.

Same x86 Architecture

Both Intel and AMD EPYC™ processors use the same
x86 architecture, which means, in most situations,
applications running on existing EC2 instances can
transition from one to the other, seamlessly.

A little change can save
customers up to 10% of
their compute costs.

Vinayak Kumar
Stackgenie Founder and CEO

This white paper demonstrates the
ease of moving from Intel to AMD-
based instances. As demonstrated
through the various examples, a little
change can go a long way. A single
line of code can save customers up to
10% of their compute costs.

For AWS customers looking at price-
optimised compute options, AMD
EPYC™ provides greater flexibility
when looking at right-sizing instances.

There is also further excitement with
the launch of the third generation of
AMD EPYC™ processors. Customers
will have even more flexibility and
choice with the launch of Ré6a, Céa
and Méa instances.

37 | stackgenie.io

extension of your team.

&

STREAMLINE

Ensure holistic
transformation for

optimal performance.

EXPERTS

Bring in expert talent to

drive innovation.

WHAT WE DO?
HOW WE SUPPORT YOU

Augment and enhance your people capabilities throughout your
digital transformation journey with us partnering and working as an

=

FINANCE

Keep digital transformation
focused on budget-friendly
practices.

73
ACCELERATE

Ensure holistic
transformation for
optimal performance.

Stackgenie | Moving from Intel to AMD-powered instances

Take advantage of
our comprehensive,
complementary and

collaborative support
matrix.

o G

INSIGHT INNOVATE
Gain data-backed insights Go beyond existing
from customer preferences. technologies make your

business agile, secure and
streamlined.

Byt DS

STRATEGY CUSTOM
Identify custom strategies to Augment your existing
give you a competitive edge. business systems with

tailored support plans.

39 | stackgenie.io

http://stackgenie.io

 stackgenie

. Toll-Free: 0330-133-4519

M info@stackgenie.io | hello@stackgenie.io

United Kingdom | 71-75 Shelton Street, London, United Kingdom, WC2H 2JQ

India | Orchestra Project, Laham Commercial Complex, Trivandrum, Kerala, India 695582

