Fragen der Teilnehmer im Webcast Heise/InterSystems
,Gewinnbringend und risikofrei: Containerisierung ohne Reue”
am 19.5.2020

Hier sind die Antworten zu den in der Sendung unbeantwortet gebliebenen Fragen:

1) Als Grundlage sollte ein beschriebener E2E-Business-Prozess dienen. Dann extrapolieren und
dann kann man sich ja liber Microservices Gedanken machen. Ist an dieser Sichtweise etwas
falsch?

Antwort: Das ist sicherlich eine valide Vorgehensweise.

2) Ich bin schon lange aus Application Development drauen. Aber was hat sich eigentlich am SW-
Entwicklungsprozess gedndert? Von Requirements > Design (APPL, API; DB) > Development >
Function Testing > Integration Testing > Performance Testing > Acceptance Test > EU-Educaton >
Deploy & Operations. Alles auf Basis eines Datenflussmodells und Datenbankdesigns.

Antwort: Der Prozess ist alles in allem sicher weiterhin giiltig. Die Art und Weise, wie die einzelnen
Prozessschritte umgesetzt werden und wie die Orchestrierung der einzelnen Schritte erfolgt,
unterliegt sicher einer gewissen Dynamik und Veranderung.

3) Ist der Lastgenerator im Standard Docker enthalten?

Antwort: Nein, der Lastgenerator, den Sie in der Demo gesehen haben, war in InterSystems IRIS
implementiert. Es gibt aber verfligbare Lastgeneratoren, um die APl zu ,stressen”. SOAPUI bietet
beispielsweise auch etwas. Weitere Optionen:

RESTful Stress: https://chrome.google.com/webstore/detail/restful-
stress/lljgneahfmgjmpglpbhmkangancgdgeb

awesome-http-benchmark: https://github.com/denji/awesome-http-benchmark

4) Inwieweit hat DevOps was mit Servicevirtualiserung und Parallelentwicklung zu tun? Hype ist ja
heute agile und nicht Waterfall.

Antwort: Service Virtualisierung und Parallelentwicklung sind Bausteine, die bei der Umsetzung des

DevOps Ansatzes eingesetzt bzw. genutzt werden kénnen.

5) Woher weiB} das System, welches Image sich hinter msorder2 verbirgt? Hat ja einen anderen
Namen, als der urspriingliche Container.


https://github.com/denji/awesome-http-benchmark

Antwort: Ich hatte den Container vorab bereits erzeugt, ihn aber gestoppt. Ein Container wird mit
dem docker run Kommando erzeugt. Einer der Parameter bei diesem Kommando ist der Name des
Images, zu dem der Container erzeugt werden soll.

6) Kann eine DLL oder SO als Container gesehen?

Antwort: Ein Container ist zur Laufzeit im Prinzip ein Prozess auf dem Host. Dieser Prozess stellt
entweder die Applikation selber da oder startet weitere Prozesse auf dem Host, die dann die
Applikation ausmachen. Wird der Vaterprozess beendet, wird auch der Container beendet.

Auf der Disk ist der Container im Prinzip ein Stiick Filesystem, in dem der benétigte Code z.B. in
einem Binary liegt und eben alle benétigten DLLs oder SOs.

7) Ist application-source ein Teil von Image? Wenn ich docker als dev-enviroment benutze, ist es
mir bequemer, natiirlich source zu mounten (um image nicht neu builden).

Antwort: Theoretisch kdnnen Sie auch den Sourcecode in den Container legen, aber in der Praxis
sieht der Entwicklungsprozess eher so aus, dass die Entwickler z.B. ein lokales Git Repository haben
und dann ihre Anderungen ins Git committen. D.h. die Quelle der Wahrheit stellt das Source-Control
System da.

Container sind eine Deployment-Option und meiner Meinung nach nicht so sehr eine
Entwicklungsumgebung.

8) Wie schaut es mit den Berechtigungen aus? D.h. unter welchen credentials laufen die container?
Alle unter denselben creds oder lasst sich das steuern?

Antwort: Dies lasst sich beeinflussen. Die InterSystems IRIS Container laufen z.B. nicht als Root User
und bei default sind Container auch nicht privilegiert. Hier kann man aber Einfluss nehmen. Dies mag
von Containerplattform zu Containerplattform variieren.

9) Lauft die API auch in einem Container?

Antwort: In meinem Falle ja.

10) Wie wirkt sich die Verwendung von Containern auf Lizenzfragen aus?

Antwort: Lizenzfragen fiir das Host-Betriebssystem? Der Container enthélt ja kein Betriebssystem,
sondern lauft wie eine Applikation auf dem Host. Der sollte natiirlich ordentlich lizensiert sein. Der
Container verursacht keine zusatzlichen Lizenzkosten im Vergleich zum Deployment ohne Container,
es sei denn die Container-Runtime ist kostenpflichtig.

11) Welches APl Management benutzt lhr?

Antwort: InterSystems IRIS beinhaltet den InterSystems API-Manager. Den hatte ich auch in der
Demo benutzt.



12) Bitte erkldren Sie noch einmal den Zusammenhang zwischen den Container und Microservices -
1:1 oder 1:n oder n:1...?

Antwort: Die Verteilung liegt bei Ihnen. Ich hatte meine Service funktionsorientiert geblindelt und fir
jede dieser Einheiten einen eigenen Container.

Theoretisch kénnen Sie aber auch jeden Endpunkt in einen eigenen Container legen. Damit
bekommen Sie aber ein riesiges Cluster aus Containern, der kaum noch beherrschbar sein dirfte.

13) Miissen die Entwickler meiner Applikation in irgendeiner Weise auf zentrale Komponente API-
Manager Riicksicht nehmen oder ist dieser véllig transparent?

Antwort: Der API-Manager (zumindest der InterSystems API-Manager) ist vollig transparent.

14) Was genau macht IRIS, bzw. was verwenden Leute, die es (noch) nicht haben? Und was macht
IRIS dann leichter und besser?

Antwort: InterSystems IRIS ist eine Datenplattform, die hochgradig interoperabel ist und die es
ermoglicht, regelbasierte Business-Prozesse mit Human-Workflow-Elementen systemuibergreifend
implementieren zu kénnen. Dariiber hinaus bietet es Analytics von strukturierten und
unstrukturierten Daten, erganzt um Machine-Learning-Verfahren. Ein weiterer Fokus liegt auf
Skalierbarkeit. Sie konnen auf einem Notebook beginnen, wie ich ihn auch in meiner Demo hatte und
wenn die Anforderungen wachsen, wachst lhre Applikation mit und kann sowohl vertikal als auch
horizontal skalieren.

15) Ist anstelle der Verwendung von REST Services auch die Verwendung von SOAP Services
moglich?

Antwort: Ja. SOAP ist aber schwergewichtiger, allein durch die XML-Strukturen. Dafiir ist es ein
Standard. REST ist kein Standard und beruht letztlich auf Konvention, aber durch die Verwendung
von JSON in der Regel schlanker. JSON ist aber kein MUSS bei REST.

16) Fur welche Anwendungen ist Containerisierung absolut sinnvoll? Anzahl User-abhangig?

Antwort: Ich wiirde Containerisierung nicht zwingend von der User-Anzahl abhangig machen,
sondern davon, ob ich ein hdufiges Deployment meiner Applikation anstrebe oder ob ich einzelne
Bestandteile der Applikation skalieren kénnen will usw.



